A highly stable, nanotube-enhanced, CMOS-MEMS thermal emitter for mid-IR gas sensing

Abstract The gas sensor market is growing fast, driven by many socioeconomic and industrial factors. Mid-infrared (MIR) gas sensors offer excellent performance for an increasing number of sensing applications in healthcare, smart homes, and the automotive sector. Having access to low-cost, miniaturi...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Daniel Popa, Richard Hopper, Syed Zeeshan Ali, Matthew Thomas Cole, Ye Fan, Vlad-Petru Veigang-Radulescu, Rohit Chikkaraddy, Jayakrupakar Nallala, Yuxin Xing, Jack Alexander-Webber, Stephan Hofmann, Andrea De Luca, Julian William Gardner, Florin Udrea
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/41b2a110b97247ea971192b1793a1295
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract The gas sensor market is growing fast, driven by many socioeconomic and industrial factors. Mid-infrared (MIR) gas sensors offer excellent performance for an increasing number of sensing applications in healthcare, smart homes, and the automotive sector. Having access to low-cost, miniaturized, energy efficient light sources is of critical importance for the monolithic integration of MIR sensors. Here, we present an on-chip broadband thermal MIR source fabricated by combining a complementary metal oxide semiconductor (CMOS) micro-hotplate with a dielectric-encapsulated carbon nanotube (CNT) blackbody layer. The micro-hotplate was used during fabrication as a micro-reactor to facilitate high temperature (>700 $$^{\circ }$$ ∘ C) growth of the CNT layer and also for post-growth thermal annealing. We demonstrate, for the first time, stable extended operation in air of devices with a dielectric-encapsulated CNT layer at heater temperatures above 600 $$^{\circ }$$ ∘ C. The demonstrated devices exhibit almost unitary emissivity across the entire MIR spectrum, offering an ideal solution for low-cost, highly-integrated MIR spectroscopy for the Internet of Things.