A highly stable, nanotube-enhanced, CMOS-MEMS thermal emitter for mid-IR gas sensing

Abstract The gas sensor market is growing fast, driven by many socioeconomic and industrial factors. Mid-infrared (MIR) gas sensors offer excellent performance for an increasing number of sensing applications in healthcare, smart homes, and the automotive sector. Having access to low-cost, miniaturi...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Daniel Popa, Richard Hopper, Syed Zeeshan Ali, Matthew Thomas Cole, Ye Fan, Vlad-Petru Veigang-Radulescu, Rohit Chikkaraddy, Jayakrupakar Nallala, Yuxin Xing, Jack Alexander-Webber, Stephan Hofmann, Andrea De Luca, Julian William Gardner, Florin Udrea
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/41b2a110b97247ea971192b1793a1295
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:41b2a110b97247ea971192b1793a1295
record_format dspace
spelling oai:doaj.org-article:41b2a110b97247ea971192b1793a12952021-11-28T12:19:11ZA highly stable, nanotube-enhanced, CMOS-MEMS thermal emitter for mid-IR gas sensing10.1038/s41598-021-02121-52045-2322https://doaj.org/article/41b2a110b97247ea971192b1793a12952021-11-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-02121-5https://doaj.org/toc/2045-2322Abstract The gas sensor market is growing fast, driven by many socioeconomic and industrial factors. Mid-infrared (MIR) gas sensors offer excellent performance for an increasing number of sensing applications in healthcare, smart homes, and the automotive sector. Having access to low-cost, miniaturized, energy efficient light sources is of critical importance for the monolithic integration of MIR sensors. Here, we present an on-chip broadband thermal MIR source fabricated by combining a complementary metal oxide semiconductor (CMOS) micro-hotplate with a dielectric-encapsulated carbon nanotube (CNT) blackbody layer. The micro-hotplate was used during fabrication as a micro-reactor to facilitate high temperature (>700 $$^{\circ }$$ ∘ C) growth of the CNT layer and also for post-growth thermal annealing. We demonstrate, for the first time, stable extended operation in air of devices with a dielectric-encapsulated CNT layer at heater temperatures above 600 $$^{\circ }$$ ∘ C. The demonstrated devices exhibit almost unitary emissivity across the entire MIR spectrum, offering an ideal solution for low-cost, highly-integrated MIR spectroscopy for the Internet of Things.Daniel PopaRichard HopperSyed Zeeshan AliMatthew Thomas ColeYe FanVlad-Petru Veigang-RadulescuRohit ChikkaraddyJayakrupakar NallalaYuxin XingJack Alexander-WebberStephan HofmannAndrea De LucaJulian William GardnerFlorin UdreaNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-7 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Daniel Popa
Richard Hopper
Syed Zeeshan Ali
Matthew Thomas Cole
Ye Fan
Vlad-Petru Veigang-Radulescu
Rohit Chikkaraddy
Jayakrupakar Nallala
Yuxin Xing
Jack Alexander-Webber
Stephan Hofmann
Andrea De Luca
Julian William Gardner
Florin Udrea
A highly stable, nanotube-enhanced, CMOS-MEMS thermal emitter for mid-IR gas sensing
description Abstract The gas sensor market is growing fast, driven by many socioeconomic and industrial factors. Mid-infrared (MIR) gas sensors offer excellent performance for an increasing number of sensing applications in healthcare, smart homes, and the automotive sector. Having access to low-cost, miniaturized, energy efficient light sources is of critical importance for the monolithic integration of MIR sensors. Here, we present an on-chip broadband thermal MIR source fabricated by combining a complementary metal oxide semiconductor (CMOS) micro-hotplate with a dielectric-encapsulated carbon nanotube (CNT) blackbody layer. The micro-hotplate was used during fabrication as a micro-reactor to facilitate high temperature (>700 $$^{\circ }$$ ∘ C) growth of the CNT layer and also for post-growth thermal annealing. We demonstrate, for the first time, stable extended operation in air of devices with a dielectric-encapsulated CNT layer at heater temperatures above 600 $$^{\circ }$$ ∘ C. The demonstrated devices exhibit almost unitary emissivity across the entire MIR spectrum, offering an ideal solution for low-cost, highly-integrated MIR spectroscopy for the Internet of Things.
format article
author Daniel Popa
Richard Hopper
Syed Zeeshan Ali
Matthew Thomas Cole
Ye Fan
Vlad-Petru Veigang-Radulescu
Rohit Chikkaraddy
Jayakrupakar Nallala
Yuxin Xing
Jack Alexander-Webber
Stephan Hofmann
Andrea De Luca
Julian William Gardner
Florin Udrea
author_facet Daniel Popa
Richard Hopper
Syed Zeeshan Ali
Matthew Thomas Cole
Ye Fan
Vlad-Petru Veigang-Radulescu
Rohit Chikkaraddy
Jayakrupakar Nallala
Yuxin Xing
Jack Alexander-Webber
Stephan Hofmann
Andrea De Luca
Julian William Gardner
Florin Udrea
author_sort Daniel Popa
title A highly stable, nanotube-enhanced, CMOS-MEMS thermal emitter for mid-IR gas sensing
title_short A highly stable, nanotube-enhanced, CMOS-MEMS thermal emitter for mid-IR gas sensing
title_full A highly stable, nanotube-enhanced, CMOS-MEMS thermal emitter for mid-IR gas sensing
title_fullStr A highly stable, nanotube-enhanced, CMOS-MEMS thermal emitter for mid-IR gas sensing
title_full_unstemmed A highly stable, nanotube-enhanced, CMOS-MEMS thermal emitter for mid-IR gas sensing
title_sort highly stable, nanotube-enhanced, cmos-mems thermal emitter for mid-ir gas sensing
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/41b2a110b97247ea971192b1793a1295
work_keys_str_mv AT danielpopa ahighlystablenanotubeenhancedcmosmemsthermalemitterformidirgassensing
AT richardhopper ahighlystablenanotubeenhancedcmosmemsthermalemitterformidirgassensing
AT syedzeeshanali ahighlystablenanotubeenhancedcmosmemsthermalemitterformidirgassensing
AT matthewthomascole ahighlystablenanotubeenhancedcmosmemsthermalemitterformidirgassensing
AT yefan ahighlystablenanotubeenhancedcmosmemsthermalemitterformidirgassensing
AT vladpetruveigangradulescu ahighlystablenanotubeenhancedcmosmemsthermalemitterformidirgassensing
AT rohitchikkaraddy ahighlystablenanotubeenhancedcmosmemsthermalemitterformidirgassensing
AT jayakrupakarnallala ahighlystablenanotubeenhancedcmosmemsthermalemitterformidirgassensing
AT yuxinxing ahighlystablenanotubeenhancedcmosmemsthermalemitterformidirgassensing
AT jackalexanderwebber ahighlystablenanotubeenhancedcmosmemsthermalemitterformidirgassensing
AT stephanhofmann ahighlystablenanotubeenhancedcmosmemsthermalemitterformidirgassensing
AT andreadeluca ahighlystablenanotubeenhancedcmosmemsthermalemitterformidirgassensing
AT julianwilliamgardner ahighlystablenanotubeenhancedcmosmemsthermalemitterformidirgassensing
AT florinudrea ahighlystablenanotubeenhancedcmosmemsthermalemitterformidirgassensing
AT danielpopa highlystablenanotubeenhancedcmosmemsthermalemitterformidirgassensing
AT richardhopper highlystablenanotubeenhancedcmosmemsthermalemitterformidirgassensing
AT syedzeeshanali highlystablenanotubeenhancedcmosmemsthermalemitterformidirgassensing
AT matthewthomascole highlystablenanotubeenhancedcmosmemsthermalemitterformidirgassensing
AT yefan highlystablenanotubeenhancedcmosmemsthermalemitterformidirgassensing
AT vladpetruveigangradulescu highlystablenanotubeenhancedcmosmemsthermalemitterformidirgassensing
AT rohitchikkaraddy highlystablenanotubeenhancedcmosmemsthermalemitterformidirgassensing
AT jayakrupakarnallala highlystablenanotubeenhancedcmosmemsthermalemitterformidirgassensing
AT yuxinxing highlystablenanotubeenhancedcmosmemsthermalemitterformidirgassensing
AT jackalexanderwebber highlystablenanotubeenhancedcmosmemsthermalemitterformidirgassensing
AT stephanhofmann highlystablenanotubeenhancedcmosmemsthermalemitterformidirgassensing
AT andreadeluca highlystablenanotubeenhancedcmosmemsthermalemitterformidirgassensing
AT julianwilliamgardner highlystablenanotubeenhancedcmosmemsthermalemitterformidirgassensing
AT florinudrea highlystablenanotubeenhancedcmosmemsthermalemitterformidirgassensing
_version_ 1718408072343322624