A highly stable, nanotube-enhanced, CMOS-MEMS thermal emitter for mid-IR gas sensing
Abstract The gas sensor market is growing fast, driven by many socioeconomic and industrial factors. Mid-infrared (MIR) gas sensors offer excellent performance for an increasing number of sensing applications in healthcare, smart homes, and the automotive sector. Having access to low-cost, miniaturi...
Guardado en:
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/41b2a110b97247ea971192b1793a1295 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:41b2a110b97247ea971192b1793a1295 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:41b2a110b97247ea971192b1793a12952021-11-28T12:19:11ZA highly stable, nanotube-enhanced, CMOS-MEMS thermal emitter for mid-IR gas sensing10.1038/s41598-021-02121-52045-2322https://doaj.org/article/41b2a110b97247ea971192b1793a12952021-11-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-02121-5https://doaj.org/toc/2045-2322Abstract The gas sensor market is growing fast, driven by many socioeconomic and industrial factors. Mid-infrared (MIR) gas sensors offer excellent performance for an increasing number of sensing applications in healthcare, smart homes, and the automotive sector. Having access to low-cost, miniaturized, energy efficient light sources is of critical importance for the monolithic integration of MIR sensors. Here, we present an on-chip broadband thermal MIR source fabricated by combining a complementary metal oxide semiconductor (CMOS) micro-hotplate with a dielectric-encapsulated carbon nanotube (CNT) blackbody layer. The micro-hotplate was used during fabrication as a micro-reactor to facilitate high temperature (>700 $$^{\circ }$$ ∘ C) growth of the CNT layer and also for post-growth thermal annealing. We demonstrate, for the first time, stable extended operation in air of devices with a dielectric-encapsulated CNT layer at heater temperatures above 600 $$^{\circ }$$ ∘ C. The demonstrated devices exhibit almost unitary emissivity across the entire MIR spectrum, offering an ideal solution for low-cost, highly-integrated MIR spectroscopy for the Internet of Things.Daniel PopaRichard HopperSyed Zeeshan AliMatthew Thomas ColeYe FanVlad-Petru Veigang-RadulescuRohit ChikkaraddyJayakrupakar NallalaYuxin XingJack Alexander-WebberStephan HofmannAndrea De LucaJulian William GardnerFlorin UdreaNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-7 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Daniel Popa Richard Hopper Syed Zeeshan Ali Matthew Thomas Cole Ye Fan Vlad-Petru Veigang-Radulescu Rohit Chikkaraddy Jayakrupakar Nallala Yuxin Xing Jack Alexander-Webber Stephan Hofmann Andrea De Luca Julian William Gardner Florin Udrea A highly stable, nanotube-enhanced, CMOS-MEMS thermal emitter for mid-IR gas sensing |
description |
Abstract The gas sensor market is growing fast, driven by many socioeconomic and industrial factors. Mid-infrared (MIR) gas sensors offer excellent performance for an increasing number of sensing applications in healthcare, smart homes, and the automotive sector. Having access to low-cost, miniaturized, energy efficient light sources is of critical importance for the monolithic integration of MIR sensors. Here, we present an on-chip broadband thermal MIR source fabricated by combining a complementary metal oxide semiconductor (CMOS) micro-hotplate with a dielectric-encapsulated carbon nanotube (CNT) blackbody layer. The micro-hotplate was used during fabrication as a micro-reactor to facilitate high temperature (>700 $$^{\circ }$$ ∘ C) growth of the CNT layer and also for post-growth thermal annealing. We demonstrate, for the first time, stable extended operation in air of devices with a dielectric-encapsulated CNT layer at heater temperatures above 600 $$^{\circ }$$ ∘ C. The demonstrated devices exhibit almost unitary emissivity across the entire MIR spectrum, offering an ideal solution for low-cost, highly-integrated MIR spectroscopy for the Internet of Things. |
format |
article |
author |
Daniel Popa Richard Hopper Syed Zeeshan Ali Matthew Thomas Cole Ye Fan Vlad-Petru Veigang-Radulescu Rohit Chikkaraddy Jayakrupakar Nallala Yuxin Xing Jack Alexander-Webber Stephan Hofmann Andrea De Luca Julian William Gardner Florin Udrea |
author_facet |
Daniel Popa Richard Hopper Syed Zeeshan Ali Matthew Thomas Cole Ye Fan Vlad-Petru Veigang-Radulescu Rohit Chikkaraddy Jayakrupakar Nallala Yuxin Xing Jack Alexander-Webber Stephan Hofmann Andrea De Luca Julian William Gardner Florin Udrea |
author_sort |
Daniel Popa |
title |
A highly stable, nanotube-enhanced, CMOS-MEMS thermal emitter for mid-IR gas sensing |
title_short |
A highly stable, nanotube-enhanced, CMOS-MEMS thermal emitter for mid-IR gas sensing |
title_full |
A highly stable, nanotube-enhanced, CMOS-MEMS thermal emitter for mid-IR gas sensing |
title_fullStr |
A highly stable, nanotube-enhanced, CMOS-MEMS thermal emitter for mid-IR gas sensing |
title_full_unstemmed |
A highly stable, nanotube-enhanced, CMOS-MEMS thermal emitter for mid-IR gas sensing |
title_sort |
highly stable, nanotube-enhanced, cmos-mems thermal emitter for mid-ir gas sensing |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/41b2a110b97247ea971192b1793a1295 |
work_keys_str_mv |
AT danielpopa ahighlystablenanotubeenhancedcmosmemsthermalemitterformidirgassensing AT richardhopper ahighlystablenanotubeenhancedcmosmemsthermalemitterformidirgassensing AT syedzeeshanali ahighlystablenanotubeenhancedcmosmemsthermalemitterformidirgassensing AT matthewthomascole ahighlystablenanotubeenhancedcmosmemsthermalemitterformidirgassensing AT yefan ahighlystablenanotubeenhancedcmosmemsthermalemitterformidirgassensing AT vladpetruveigangradulescu ahighlystablenanotubeenhancedcmosmemsthermalemitterformidirgassensing AT rohitchikkaraddy ahighlystablenanotubeenhancedcmosmemsthermalemitterformidirgassensing AT jayakrupakarnallala ahighlystablenanotubeenhancedcmosmemsthermalemitterformidirgassensing AT yuxinxing ahighlystablenanotubeenhancedcmosmemsthermalemitterformidirgassensing AT jackalexanderwebber ahighlystablenanotubeenhancedcmosmemsthermalemitterformidirgassensing AT stephanhofmann ahighlystablenanotubeenhancedcmosmemsthermalemitterformidirgassensing AT andreadeluca ahighlystablenanotubeenhancedcmosmemsthermalemitterformidirgassensing AT julianwilliamgardner ahighlystablenanotubeenhancedcmosmemsthermalemitterformidirgassensing AT florinudrea ahighlystablenanotubeenhancedcmosmemsthermalemitterformidirgassensing AT danielpopa highlystablenanotubeenhancedcmosmemsthermalemitterformidirgassensing AT richardhopper highlystablenanotubeenhancedcmosmemsthermalemitterformidirgassensing AT syedzeeshanali highlystablenanotubeenhancedcmosmemsthermalemitterformidirgassensing AT matthewthomascole highlystablenanotubeenhancedcmosmemsthermalemitterformidirgassensing AT yefan highlystablenanotubeenhancedcmosmemsthermalemitterformidirgassensing AT vladpetruveigangradulescu highlystablenanotubeenhancedcmosmemsthermalemitterformidirgassensing AT rohitchikkaraddy highlystablenanotubeenhancedcmosmemsthermalemitterformidirgassensing AT jayakrupakarnallala highlystablenanotubeenhancedcmosmemsthermalemitterformidirgassensing AT yuxinxing highlystablenanotubeenhancedcmosmemsthermalemitterformidirgassensing AT jackalexanderwebber highlystablenanotubeenhancedcmosmemsthermalemitterformidirgassensing AT stephanhofmann highlystablenanotubeenhancedcmosmemsthermalemitterformidirgassensing AT andreadeluca highlystablenanotubeenhancedcmosmemsthermalemitterformidirgassensing AT julianwilliamgardner highlystablenanotubeenhancedcmosmemsthermalemitterformidirgassensing AT florinudrea highlystablenanotubeenhancedcmosmemsthermalemitterformidirgassensing |
_version_ |
1718408072343322624 |