Microstructure Features and Superplasticity of Extruded, Rolled and SPD-Processed Magnesium Alloys: A Short Review
In this study, an overview of microstructure features such as grain size, grain structure, texture and its impact on strain rate sensitivity, strain hardening index, activation energy and thermal stability for achieving superplasticity of Mg alloys are presented. The deformation behavior under diffe...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/41ca1c4abe364c03be0f26553a8160e9 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:41ca1c4abe364c03be0f26553a8160e9 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:41ca1c4abe364c03be0f26553a8160e92021-11-25T18:21:47ZMicrostructure Features and Superplasticity of Extruded, Rolled and SPD-Processed Magnesium Alloys: A Short Review10.3390/met111117662075-4701https://doaj.org/article/41ca1c4abe364c03be0f26553a8160e92021-11-01T00:00:00Zhttps://www.mdpi.com/2075-4701/11/11/1766https://doaj.org/toc/2075-4701In this study, an overview of microstructure features such as grain size, grain structure, texture and its impact on strain rate sensitivity, strain hardening index, activation energy and thermal stability for achieving superplasticity of Mg alloys are presented. The deformation behavior under different strain rates and temperatures was also elaborated. For high elongation to fracture grain boundary sliding, grain boundary diffusion is the dominant deformation mechanism. In contrast, for low-temperature and high strain rate superplasticity, grain boundary sliding and solute drag creep mechanism or viscous glide dislocation followed by GBS are the dominant deformations. In addition, the results of different studies were compared, and optimal strain rate and temperature were diagnosed for achieving excellent high strain rate superplasticity.Abdul MalikUmer Masood ChaudryKotiba HamadTea-Sung JunMDPI AGarticlegrain sizesuperplasticityelongation to fracturethermal stabilitytextureMining engineering. MetallurgyTN1-997ENMetals, Vol 11, Iss 1766, p 1766 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
grain size superplasticity elongation to fracture thermal stability texture Mining engineering. Metallurgy TN1-997 |
spellingShingle |
grain size superplasticity elongation to fracture thermal stability texture Mining engineering. Metallurgy TN1-997 Abdul Malik Umer Masood Chaudry Kotiba Hamad Tea-Sung Jun Microstructure Features and Superplasticity of Extruded, Rolled and SPD-Processed Magnesium Alloys: A Short Review |
description |
In this study, an overview of microstructure features such as grain size, grain structure, texture and its impact on strain rate sensitivity, strain hardening index, activation energy and thermal stability for achieving superplasticity of Mg alloys are presented. The deformation behavior under different strain rates and temperatures was also elaborated. For high elongation to fracture grain boundary sliding, grain boundary diffusion is the dominant deformation mechanism. In contrast, for low-temperature and high strain rate superplasticity, grain boundary sliding and solute drag creep mechanism or viscous glide dislocation followed by GBS are the dominant deformations. In addition, the results of different studies were compared, and optimal strain rate and temperature were diagnosed for achieving excellent high strain rate superplasticity. |
format |
article |
author |
Abdul Malik Umer Masood Chaudry Kotiba Hamad Tea-Sung Jun |
author_facet |
Abdul Malik Umer Masood Chaudry Kotiba Hamad Tea-Sung Jun |
author_sort |
Abdul Malik |
title |
Microstructure Features and Superplasticity of Extruded, Rolled and SPD-Processed Magnesium Alloys: A Short Review |
title_short |
Microstructure Features and Superplasticity of Extruded, Rolled and SPD-Processed Magnesium Alloys: A Short Review |
title_full |
Microstructure Features and Superplasticity of Extruded, Rolled and SPD-Processed Magnesium Alloys: A Short Review |
title_fullStr |
Microstructure Features and Superplasticity of Extruded, Rolled and SPD-Processed Magnesium Alloys: A Short Review |
title_full_unstemmed |
Microstructure Features and Superplasticity of Extruded, Rolled and SPD-Processed Magnesium Alloys: A Short Review |
title_sort |
microstructure features and superplasticity of extruded, rolled and spd-processed magnesium alloys: a short review |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/41ca1c4abe364c03be0f26553a8160e9 |
work_keys_str_mv |
AT abdulmalik microstructurefeaturesandsuperplasticityofextrudedrolledandspdprocessedmagnesiumalloysashortreview AT umermasoodchaudry microstructurefeaturesandsuperplasticityofextrudedrolledandspdprocessedmagnesiumalloysashortreview AT kotibahamad microstructurefeaturesandsuperplasticityofextrudedrolledandspdprocessedmagnesiumalloysashortreview AT teasungjun microstructurefeaturesandsuperplasticityofextrudedrolledandspdprocessedmagnesiumalloysashortreview |
_version_ |
1718411251279724544 |