Quantum simulation of parity–time symmetry breaking with a superconducting quantum processor

In quantum physics, observables are generally believed to be Hermitian, but there are several examples of non-Hermitian systems possessing real positive eigenvalues, particularly among open systems. Here, the authors simulate the evolution of a non-Hermitian Hamiltonian on a superconducting quantum...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Shruti Dogra, Artem A. Melnikov, Gheorghe Sorin Paraoanu
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Acceso en línea:https://doaj.org/article/41cf542248d04daaa9f377e7490e7cb8
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:41cf542248d04daaa9f377e7490e7cb8
record_format dspace
spelling oai:doaj.org-article:41cf542248d04daaa9f377e7490e7cb82021-12-02T12:11:44ZQuantum simulation of parity–time symmetry breaking with a superconducting quantum processor10.1038/s42005-021-00534-22399-3650https://doaj.org/article/41cf542248d04daaa9f377e7490e7cb82021-02-01T00:00:00Zhttps://doi.org/10.1038/s42005-021-00534-2https://doaj.org/toc/2399-3650In quantum physics, observables are generally believed to be Hermitian, but there are several examples of non-Hermitian systems possessing real positive eigenvalues, particularly among open systems. Here, the authors simulate the evolution of a non-Hermitian Hamiltonian on a superconducting quantum processor using a dilation procedure involving an ancillary qubit, and observe the parity–time (PT)-symmetry breaking phase transition at the exceptional points.Shruti DograArtem A. MelnikovGheorghe Sorin ParaoanuNature PortfolioarticleAstrophysicsQB460-466PhysicsQC1-999ENCommunications Physics, Vol 4, Iss 1, Pp 1-8 (2021)
institution DOAJ
collection DOAJ
language EN
topic Astrophysics
QB460-466
Physics
QC1-999
spellingShingle Astrophysics
QB460-466
Physics
QC1-999
Shruti Dogra
Artem A. Melnikov
Gheorghe Sorin Paraoanu
Quantum simulation of parity–time symmetry breaking with a superconducting quantum processor
description In quantum physics, observables are generally believed to be Hermitian, but there are several examples of non-Hermitian systems possessing real positive eigenvalues, particularly among open systems. Here, the authors simulate the evolution of a non-Hermitian Hamiltonian on a superconducting quantum processor using a dilation procedure involving an ancillary qubit, and observe the parity–time (PT)-symmetry breaking phase transition at the exceptional points.
format article
author Shruti Dogra
Artem A. Melnikov
Gheorghe Sorin Paraoanu
author_facet Shruti Dogra
Artem A. Melnikov
Gheorghe Sorin Paraoanu
author_sort Shruti Dogra
title Quantum simulation of parity–time symmetry breaking with a superconducting quantum processor
title_short Quantum simulation of parity–time symmetry breaking with a superconducting quantum processor
title_full Quantum simulation of parity–time symmetry breaking with a superconducting quantum processor
title_fullStr Quantum simulation of parity–time symmetry breaking with a superconducting quantum processor
title_full_unstemmed Quantum simulation of parity–time symmetry breaking with a superconducting quantum processor
title_sort quantum simulation of parity–time symmetry breaking with a superconducting quantum processor
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/41cf542248d04daaa9f377e7490e7cb8
work_keys_str_mv AT shrutidogra quantumsimulationofparitytimesymmetrybreakingwithasuperconductingquantumprocessor
AT artemamelnikov quantumsimulationofparitytimesymmetrybreakingwithasuperconductingquantumprocessor
AT gheorghesorinparaoanu quantumsimulationofparitytimesymmetrybreakingwithasuperconductingquantumprocessor
_version_ 1718394623099928576