A generalized deep learning framework for whole-slide image segmentation and analysis
Abstract Histopathology tissue analysis is considered the gold standard in cancer diagnosis and prognosis. Whole-slide imaging (WSI), i.e., the scanning and digitization of entire histology slides, are now being adopted across the world in pathology labs. Trained histopathologists can provide an acc...
Guardado en:
Autores principales: | Mahendra Khened, Avinash Kori, Haran Rajkumar, Ganapathy Krishnamurthi, Balaji Srinivasan |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/41e5df922c4a416987a654bf7f568fc6 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Deep learning-based histopathological segmentation for whole slide images of colorectal cancer in a compressed domain
por: Hyeongsub Kim, et al.
Publicado: (2021) -
Accurate diagnosis of lymphoma on whole-slide histopathology images using deep learning
por: Charlotte Syrykh, et al.
Publicado: (2020) -
Robust whole slide image analysis for cervical cancer screening using deep learning
por: Shenghua Cheng, et al.
Publicado: (2021) -
A deep learning model for the classification of indeterminate lung carcinoma in biopsy whole slide images
por: Fahdi Kanavati, et al.
Publicado: (2021) -
A deep learning model to predict RNA-Seq expression of tumours from whole slide images
por: Benoît Schmauch, et al.
Publicado: (2020)