Bayesian analysis of depth resolved OCT attenuation coefficients

Abstract Optical coherence tomography (OCT) is an optical technique which allows for volumetric visualization of the internal structures of translucent materials. Additional information can be gained by measuring the rate of signal attenuation in depth. Techniques have been developed to estimate the...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Lionel D. Fiske, Maurice C. G. Aalders, Mitra Almasian, Ton G. van Leeuwen, Aggelos K. Katsaggelos, Oliver Cossairt, Dirk J. Faber
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/41e7ff7f194c47d9ad4e5839af87e099
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:41e7ff7f194c47d9ad4e5839af87e099
record_format dspace
spelling oai:doaj.org-article:41e7ff7f194c47d9ad4e5839af87e0992021-12-02T14:16:34ZBayesian analysis of depth resolved OCT attenuation coefficients10.1038/s41598-021-81713-72045-2322https://doaj.org/article/41e7ff7f194c47d9ad4e5839af87e0992021-01-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-81713-7https://doaj.org/toc/2045-2322Abstract Optical coherence tomography (OCT) is an optical technique which allows for volumetric visualization of the internal structures of translucent materials. Additional information can be gained by measuring the rate of signal attenuation in depth. Techniques have been developed to estimate the rate of attenuation on a voxel by voxel basis. This depth resolved attenuation analysis gives insight into tissue structure and organization in a spatially resolved way. However, the presence of speckle in the OCT measurement causes the attenuation coefficient image to contain unrealistic fluctuations and makes the reliability of these images at the voxel level poor. While the distribution of speckle in OCT images has appeared in literature, the resulting voxelwise corruption of the attenuation analysis has not. In this work, the estimated depth resolved attenuation coefficient from OCT data with speckle is shown to be approximately exponentially distributed. After this, a prior distribution for the depth resolved attenuation coefficient is derived for a simple system using statistical mechanics. Finally, given a set of depth resolved estimates which were made from OCT data in the presence of speckle, a posterior probability distribution for the true voxelwise attenuation coefficient is derived and a Bayesian voxelwise estimator for the coefficient is given. These results are demonstrated in simulation and validated experimentally.Lionel D. FiskeMaurice C. G. AaldersMitra AlmasianTon G. van LeeuwenAggelos K. KatsaggelosOliver CossairtDirk J. FaberNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-11 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Lionel D. Fiske
Maurice C. G. Aalders
Mitra Almasian
Ton G. van Leeuwen
Aggelos K. Katsaggelos
Oliver Cossairt
Dirk J. Faber
Bayesian analysis of depth resolved OCT attenuation coefficients
description Abstract Optical coherence tomography (OCT) is an optical technique which allows for volumetric visualization of the internal structures of translucent materials. Additional information can be gained by measuring the rate of signal attenuation in depth. Techniques have been developed to estimate the rate of attenuation on a voxel by voxel basis. This depth resolved attenuation analysis gives insight into tissue structure and organization in a spatially resolved way. However, the presence of speckle in the OCT measurement causes the attenuation coefficient image to contain unrealistic fluctuations and makes the reliability of these images at the voxel level poor. While the distribution of speckle in OCT images has appeared in literature, the resulting voxelwise corruption of the attenuation analysis has not. In this work, the estimated depth resolved attenuation coefficient from OCT data with speckle is shown to be approximately exponentially distributed. After this, a prior distribution for the depth resolved attenuation coefficient is derived for a simple system using statistical mechanics. Finally, given a set of depth resolved estimates which were made from OCT data in the presence of speckle, a posterior probability distribution for the true voxelwise attenuation coefficient is derived and a Bayesian voxelwise estimator for the coefficient is given. These results are demonstrated in simulation and validated experimentally.
format article
author Lionel D. Fiske
Maurice C. G. Aalders
Mitra Almasian
Ton G. van Leeuwen
Aggelos K. Katsaggelos
Oliver Cossairt
Dirk J. Faber
author_facet Lionel D. Fiske
Maurice C. G. Aalders
Mitra Almasian
Ton G. van Leeuwen
Aggelos K. Katsaggelos
Oliver Cossairt
Dirk J. Faber
author_sort Lionel D. Fiske
title Bayesian analysis of depth resolved OCT attenuation coefficients
title_short Bayesian analysis of depth resolved OCT attenuation coefficients
title_full Bayesian analysis of depth resolved OCT attenuation coefficients
title_fullStr Bayesian analysis of depth resolved OCT attenuation coefficients
title_full_unstemmed Bayesian analysis of depth resolved OCT attenuation coefficients
title_sort bayesian analysis of depth resolved oct attenuation coefficients
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/41e7ff7f194c47d9ad4e5839af87e099
work_keys_str_mv AT lioneldfiske bayesiananalysisofdepthresolvedoctattenuationcoefficients
AT mauricecgaalders bayesiananalysisofdepthresolvedoctattenuationcoefficients
AT mitraalmasian bayesiananalysisofdepthresolvedoctattenuationcoefficients
AT tongvanleeuwen bayesiananalysisofdepthresolvedoctattenuationcoefficients
AT aggeloskkatsaggelos bayesiananalysisofdepthresolvedoctattenuationcoefficients
AT olivercossairt bayesiananalysisofdepthresolvedoctattenuationcoefficients
AT dirkjfaber bayesiananalysisofdepthresolvedoctattenuationcoefficients
_version_ 1718391662868168704