Interpretable machine-learning strategy for soft-magnetic property and thermal stability in Fe-based metallic glasses
Abstract Fe-based metallic glasses (MGs) have been extensively investigated due to their unique properties, especially the outstanding soft-magnetic properties. However, conventional design of soft-magnetic Fe-based MGs is heavily relied on “trial and error” experiments, and thus difficult to balanc...
Guardado en:
Autores principales: | Zhichao Lu, Xin Chen, Xiongjun Liu, Deye Lin, Yuan Wu, Yibo Zhang, Hui Wang, Suihe Jiang, Hongxiang Li, Xianzhen Wang, Zhaoping Lu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/41ec3b121f114d65904cce3446f4e76f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Predicting the propensity for thermally activated β events in metallic glasses via interpretable machine learning
por: Qi Wang, et al.
Publicado: (2020) -
Analog Circuit Soft Fault Diagnosis Based on Sparse Random Projections and K-Nearest Neighbor
por: Jian Sun, et al.
Publicado: (2021) -
Soft-mode dynamics in the ferroelectric phase transition of GeTe
por: Chen Wang, et al.
Publicado: (2021) -
A general and transferable deep learning framework for predicting phase formation in materials
por: Shuo Feng, et al.
Publicado: (2021) -
Glass transition temperature prediction of disordered molecular solids
por: Kun-Han Lin, et al.
Publicado: (2021)