AI and High-Grade Glioma for Diagnosis and Outcome Prediction: Do All Machine Learning Models Perform Equally Well?
Radiomic models outperform clinical data for outcome prediction in high-grade gliomas (HGG). However, lack of parameter standardization limits clinical applications. Many machine learning (ML) radiomic models employ single classifiers rather than ensemble learning, which is known to boost performanc...
Guardado en:
Autores principales: | Luca Pasquini, Antonio Napolitano, Martina Lucignani, Emanuela Tagliente, Francesco Dellepiane, Maria Camilla Rossi-Espagnet, Matteo Ritrovato, Antonello Vidiri, Veronica Villani, Giulio Ranazzi, Antonella Stoppacciaro, Andrea Romano, Alberto Di Napoli, Alessandro Bozzao |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/41f565c7ad4b436b98ef650d7c372b72 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Glioma multifocal multicéntrico
por: Guerrero T,Rodrigo, et al.
Publicado: (2010) -
Expresión Inmunohistoquímica de Homólogo de Fosfatasa y Tensina en Glioblastoma Multiforme y su Relación con Sobrevida
por: Espinoza-García,Esteban F, et al.
Publicado: (2019) -
A Predictive Clinical-Radiomics Nomogram for Survival Prediction of Glioblastoma Using MRI
por: Samy Ammari, et al.
Publicado: (2021) -
Functional Roles and Biological Mechanisms of Circular RNAs and Their Encoded Peptides in Glioma: A Narrative Review
por: Seyedeh Zahra Bakhti, et al.
Publicado: (2021) -
Angiogenic potential of the cerebrospinal fluid (CSF) of patients with high-grade gliomas measured with the chick embryo chorioallantoic membrane assay (CAM)
por: Sinning,Mariana, et al.
Publicado: (2012)