AI and High-Grade Glioma for Diagnosis and Outcome Prediction: Do All Machine Learning Models Perform Equally Well?
Radiomic models outperform clinical data for outcome prediction in high-grade gliomas (HGG). However, lack of parameter standardization limits clinical applications. Many machine learning (ML) radiomic models employ single classifiers rather than ensemble learning, which is known to boost performanc...
Enregistré dans:
Auteurs principaux: | Luca Pasquini, Antonio Napolitano, Martina Lucignani, Emanuela Tagliente, Francesco Dellepiane, Maria Camilla Rossi-Espagnet, Matteo Ritrovato, Antonello Vidiri, Veronica Villani, Giulio Ranazzi, Antonella Stoppacciaro, Andrea Romano, Alberto Di Napoli, Alessandro Bozzao |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Frontiers Media S.A.
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/41f565c7ad4b436b98ef650d7c372b72 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Glioma multifocal multicéntrico
par: Guerrero T,Rodrigo, et autres
Publié: (2010) -
Expresión Inmunohistoquímica de Homólogo de Fosfatasa y Tensina en Glioblastoma Multiforme y su Relación con Sobrevida
par: Espinoza-García,Esteban F, et autres
Publié: (2019) -
A Predictive Clinical-Radiomics Nomogram for Survival Prediction of Glioblastoma Using MRI
par: Samy Ammari, et autres
Publié: (2021) -
Functional Roles and Biological Mechanisms of Circular RNAs and Their Encoded Peptides in Glioma: A Narrative Review
par: Seyedeh Zahra Bakhti, et autres
Publié: (2021) -
Angiogenic potential of the cerebrospinal fluid (CSF) of patients with high-grade gliomas measured with the chick embryo chorioallantoic membrane assay (CAM)
par: Sinning,Mariana, et autres
Publié: (2012)