The taming of the cell: shape-memory nanopatterns direct cell orientation

Mitsuhiro Ebara, Koichiro Uto, Naokazu Idota, John M Hoffman, Takao AoyagiBiomaterials Unit, International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Namiki, Tsukuba, JapanAbstract: We report here that the direction of aligned cells on nanop...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Ebara M, Uto K, Idota N, Hoffman JM, Aoyagi T
Formato: article
Lenguaje:EN
Publicado: Dove Medical Press 2014
Materias:
Acceso en línea:https://doaj.org/article/41f6b950dc14468cb98e987e92197023
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:41f6b950dc14468cb98e987e92197023
record_format dspace
spelling oai:doaj.org-article:41f6b950dc14468cb98e987e921970232021-12-02T04:33:06ZThe taming of the cell: shape-memory nanopatterns direct cell orientation1178-2013https://doaj.org/article/41f6b950dc14468cb98e987e921970232014-05-01T00:00:00Zhttp://www.dovepress.com/the-taming-of-the-cell-shape-memory-nanopatterns-direct-cell-orientati-a16698https://doaj.org/toc/1178-2013 Mitsuhiro Ebara, Koichiro Uto, Naokazu Idota, John M Hoffman, Takao AoyagiBiomaterials Unit, International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Namiki, Tsukuba, JapanAbstract: We report here that the direction of aligned cells on nanopatterns can be tuned to a perpendicular direction without use of any biochemical reagents. This was enabled by shape-memory activation of nanopatterns that transition from a memorized temporal pattern to the original permanent pattern by heating. The thermally induced shape-memory nanopatterns were prepared by chemically crosslinking semi-crystalline poly(ε-caprolactone) (PCL) in a mold to show shape-memory effects over its melting temperature (Tm = 33°C). Permanent surface patterns were first generated by crosslinking the PCL macromonomers in a mold, and temporary surface patterns were then embossed onto the permanent patterns. The temporary surface patterns could be easily triggered to transition quickly to the permanent surface patterns by a 37°C heat treatment, while surface wettability was independent of temperature. To investigate the role of dynamic and reversible surface nanopatterns on cell alignment on the PCL films before and after a topographic transition, NIH 3T3 fibroblasts were seeded on fibronectin-coated PCL films with a temporary grooved topography (grooves with a height of 300 nm and width of 2 µm were spaced 9 µm apart). Interestingly, cells did not change their direction immediately after the surface transition. However, cell alignment was gradually lost with time, and finally cells realigned parallel to the permanent grooves that emerged. The addition of a cytoskeletal inhibitor prevented realignment. These results clearly indicate that cells can sense dynamic changes in the surrounding environments and spontaneously adapt to a new environment by remodeling their cytoskeleton. These findings will serve as the basis for new development of spatiotemporal tunable materials to direct cell fate.Keywords: shape-memory surface, poly(ε-caprolactone), nanopatterns, temperature-responsive polymers, cell orientationEbara MUto KIdota NHoffman JMAoyagi TDove Medical PressarticleMedicine (General)R5-920ENInternational Journal of Nanomedicine, Vol 2014, Iss Supplement 1, Pp 117-126 (2014)
institution DOAJ
collection DOAJ
language EN
topic Medicine (General)
R5-920
spellingShingle Medicine (General)
R5-920
Ebara M
Uto K
Idota N
Hoffman JM
Aoyagi T
The taming of the cell: shape-memory nanopatterns direct cell orientation
description Mitsuhiro Ebara, Koichiro Uto, Naokazu Idota, John M Hoffman, Takao AoyagiBiomaterials Unit, International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Namiki, Tsukuba, JapanAbstract: We report here that the direction of aligned cells on nanopatterns can be tuned to a perpendicular direction without use of any biochemical reagents. This was enabled by shape-memory activation of nanopatterns that transition from a memorized temporal pattern to the original permanent pattern by heating. The thermally induced shape-memory nanopatterns were prepared by chemically crosslinking semi-crystalline poly(ε-caprolactone) (PCL) in a mold to show shape-memory effects over its melting temperature (Tm = 33°C). Permanent surface patterns were first generated by crosslinking the PCL macromonomers in a mold, and temporary surface patterns were then embossed onto the permanent patterns. The temporary surface patterns could be easily triggered to transition quickly to the permanent surface patterns by a 37°C heat treatment, while surface wettability was independent of temperature. To investigate the role of dynamic and reversible surface nanopatterns on cell alignment on the PCL films before and after a topographic transition, NIH 3T3 fibroblasts were seeded on fibronectin-coated PCL films with a temporary grooved topography (grooves with a height of 300 nm and width of 2 µm were spaced 9 µm apart). Interestingly, cells did not change their direction immediately after the surface transition. However, cell alignment was gradually lost with time, and finally cells realigned parallel to the permanent grooves that emerged. The addition of a cytoskeletal inhibitor prevented realignment. These results clearly indicate that cells can sense dynamic changes in the surrounding environments and spontaneously adapt to a new environment by remodeling their cytoskeleton. These findings will serve as the basis for new development of spatiotemporal tunable materials to direct cell fate.Keywords: shape-memory surface, poly(ε-caprolactone), nanopatterns, temperature-responsive polymers, cell orientation
format article
author Ebara M
Uto K
Idota N
Hoffman JM
Aoyagi T
author_facet Ebara M
Uto K
Idota N
Hoffman JM
Aoyagi T
author_sort Ebara M
title The taming of the cell: shape-memory nanopatterns direct cell orientation
title_short The taming of the cell: shape-memory nanopatterns direct cell orientation
title_full The taming of the cell: shape-memory nanopatterns direct cell orientation
title_fullStr The taming of the cell: shape-memory nanopatterns direct cell orientation
title_full_unstemmed The taming of the cell: shape-memory nanopatterns direct cell orientation
title_sort taming of the cell: shape-memory nanopatterns direct cell orientation
publisher Dove Medical Press
publishDate 2014
url https://doaj.org/article/41f6b950dc14468cb98e987e92197023
work_keys_str_mv AT ebaram thetamingofthecellshapememorynanopatternsdirectcellorientation
AT utok thetamingofthecellshapememorynanopatternsdirectcellorientation
AT idotan thetamingofthecellshapememorynanopatternsdirectcellorientation
AT hoffmanjm thetamingofthecellshapememorynanopatternsdirectcellorientation
AT aoyagit thetamingofthecellshapememorynanopatternsdirectcellorientation
AT ebaram tamingofthecellshapememorynanopatternsdirectcellorientation
AT utok tamingofthecellshapememorynanopatternsdirectcellorientation
AT idotan tamingofthecellshapememorynanopatternsdirectcellorientation
AT hoffmanjm tamingofthecellshapememorynanopatternsdirectcellorientation
AT aoyagit tamingofthecellshapememorynanopatternsdirectcellorientation
_version_ 1718401178982678528