Shotgun-based proteomics of extracellular vesicles in Alzheimer’s disease reveals biomarkers involved in immunological and coagulation pathways

Abstract Alzheimer’s disease (AD) is the most common form of dementia and without readily available clinical biomarkers. Blood-derived proteins are routinely used for diagnostics; however, comprehensive plasma profiling is challenging due to the dynamic range in protein concentrations. Extracellular...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jonas Ellegaard Nielsen, Bent Honoré, Karsten Vestergård, Raluca Georgiana Maltesen, Gunna Christiansen, Anna Uhd Bøge, Søren Risom Kristensen, Shona Pedersen
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/41fc1d200018460e9fa27e434581d2aa
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract Alzheimer’s disease (AD) is the most common form of dementia and without readily available clinical biomarkers. Blood-derived proteins are routinely used for diagnostics; however, comprehensive plasma profiling is challenging due to the dynamic range in protein concentrations. Extracellular vesicles (EVs) can cross the blood–brain barrier and may provide a source for AD biomarkers. We investigated plasma-derived EV proteins for AD biomarkers from 10 AD patients, 10 Mild Cognitive Impairment (MCI) patients, and 9 healthy controls (Con) using liquid chromatography-tandem mass spectrometry (LC–MS/MS). The ultracentrifuged EVs were washed and confirmed according to the MISEV2018 guidelines. Some AD patients presented with highly elevated FXIIIA1 (log2 FC: 4.6, p-value: 0.005) and FXIIIB (log2 FC: 4.9, p-value: 0.018). A panel of proteins was identified discriminating Con from AD (AUC: 0.91, CI: 0.67–1.00) with ORM2 (AUC: 1.00, CI: 1.00–1.00), RBP4 (AUC: 0.99, CI: 0.95–1.00), and HYDIN (AUC: 0.89, CI: 0.72–1.00) were found especially relevant for AD. This indicates that EVs provide an easily accessible matrix for possible AD biomarkers. Some of the MCI patients, with similar protein profiles as the AD group, progressed to AD within a 2-year timespan.