Fuzzy Reset-Based <italic>H</italic><sub>∞</sub> Unknown Input Observer Design for Uncertain Nonlinear Systems With Unmeasurable Premise Variables
This paper proposes an <inline-formula> <tex-math notation="LaTeX">$H_{\infty }$ </tex-math></inline-formula> reset unknown input observer (R-UIO) based on the Takagi-Sugeno (T-S) fuzzy model for the state estimation of nonlinear uncertain systems. Firstly, <inli...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/4211727a19e84605a45bc426488ad6df |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:4211727a19e84605a45bc426488ad6df |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:4211727a19e84605a45bc426488ad6df2021-11-17T00:00:56ZFuzzy Reset-Based <italic>H</italic><sub>∞</sub> Unknown Input Observer Design for Uncertain Nonlinear Systems With Unmeasurable Premise Variables2169-353610.1109/ACCESS.2021.3125952https://doaj.org/article/4211727a19e84605a45bc426488ad6df2021-01-01T00:00:00Zhttps://ieeexplore.ieee.org/document/9605253/https://doaj.org/toc/2169-3536This paper proposes an <inline-formula> <tex-math notation="LaTeX">$H_{\infty }$ </tex-math></inline-formula> reset unknown input observer (R-UIO) based on the Takagi-Sugeno (T-S) fuzzy model for the state estimation of nonlinear uncertain systems. Firstly, <inline-formula> <tex-math notation="LaTeX">$H_{\infty }$ </tex-math></inline-formula> unknown input observer (UIO) is designed for TSFM-based nonlinear systems with measurable and unmeasurable premise variables. Then, according to the importance of observers based on unmeasurable premise variables, the results on UIO is modified to propose R-UIO. The sufficient conditions for the stabilization of the estimation error are derived in terms of linear matrix inequalities (LMIs). The proposed R-UIO benefits from less computation complexity to find the feasible parameters, improvement of the estimation process in viewpoints of convergence speed and overshoot. To verify the effectiveness of the recommended approaches, the methods are applied to a practical system.Zeinab EchreshaviMokhtar ShasadeghiMohammad Hasan AsemaniSaleh MobayenAfef FekihIEEEarticleT-S fuzzy systemreset mechanismunknown inputs (UIs)unmeasurable premise variablesexternal disturbanceElectrical engineering. Electronics. Nuclear engineeringTK1-9971ENIEEE Access, Vol 9, Pp 151729-151740 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
T-S fuzzy system reset mechanism unknown inputs (UIs) unmeasurable premise variables external disturbance Electrical engineering. Electronics. Nuclear engineering TK1-9971 |
spellingShingle |
T-S fuzzy system reset mechanism unknown inputs (UIs) unmeasurable premise variables external disturbance Electrical engineering. Electronics. Nuclear engineering TK1-9971 Zeinab Echreshavi Mokhtar Shasadeghi Mohammad Hasan Asemani Saleh Mobayen Afef Fekih Fuzzy Reset-Based <italic>H</italic><sub>∞</sub> Unknown Input Observer Design for Uncertain Nonlinear Systems With Unmeasurable Premise Variables |
description |
This paper proposes an <inline-formula> <tex-math notation="LaTeX">$H_{\infty }$ </tex-math></inline-formula> reset unknown input observer (R-UIO) based on the Takagi-Sugeno (T-S) fuzzy model for the state estimation of nonlinear uncertain systems. Firstly, <inline-formula> <tex-math notation="LaTeX">$H_{\infty }$ </tex-math></inline-formula> unknown input observer (UIO) is designed for TSFM-based nonlinear systems with measurable and unmeasurable premise variables. Then, according to the importance of observers based on unmeasurable premise variables, the results on UIO is modified to propose R-UIO. The sufficient conditions for the stabilization of the estimation error are derived in terms of linear matrix inequalities (LMIs). The proposed R-UIO benefits from less computation complexity to find the feasible parameters, improvement of the estimation process in viewpoints of convergence speed and overshoot. To verify the effectiveness of the recommended approaches, the methods are applied to a practical system. |
format |
article |
author |
Zeinab Echreshavi Mokhtar Shasadeghi Mohammad Hasan Asemani Saleh Mobayen Afef Fekih |
author_facet |
Zeinab Echreshavi Mokhtar Shasadeghi Mohammad Hasan Asemani Saleh Mobayen Afef Fekih |
author_sort |
Zeinab Echreshavi |
title |
Fuzzy Reset-Based <italic>H</italic><sub>∞</sub> Unknown Input Observer Design for Uncertain Nonlinear Systems With Unmeasurable Premise Variables |
title_short |
Fuzzy Reset-Based <italic>H</italic><sub>∞</sub> Unknown Input Observer Design for Uncertain Nonlinear Systems With Unmeasurable Premise Variables |
title_full |
Fuzzy Reset-Based <italic>H</italic><sub>∞</sub> Unknown Input Observer Design for Uncertain Nonlinear Systems With Unmeasurable Premise Variables |
title_fullStr |
Fuzzy Reset-Based <italic>H</italic><sub>∞</sub> Unknown Input Observer Design for Uncertain Nonlinear Systems With Unmeasurable Premise Variables |
title_full_unstemmed |
Fuzzy Reset-Based <italic>H</italic><sub>∞</sub> Unknown Input Observer Design for Uncertain Nonlinear Systems With Unmeasurable Premise Variables |
title_sort |
fuzzy reset-based <italic>h</italic><sub>∞</sub> unknown input observer design for uncertain nonlinear systems with unmeasurable premise variables |
publisher |
IEEE |
publishDate |
2021 |
url |
https://doaj.org/article/4211727a19e84605a45bc426488ad6df |
work_keys_str_mv |
AT zeinabechreshavi fuzzyresetbaseditalichitalicsubx221esubunknowninputobserverdesignforuncertainnonlinearsystemswithunmeasurablepremisevariables AT mokhtarshasadeghi fuzzyresetbaseditalichitalicsubx221esubunknowninputobserverdesignforuncertainnonlinearsystemswithunmeasurablepremisevariables AT mohammadhasanasemani fuzzyresetbaseditalichitalicsubx221esubunknowninputobserverdesignforuncertainnonlinearsystemswithunmeasurablepremisevariables AT salehmobayen fuzzyresetbaseditalichitalicsubx221esubunknowninputobserverdesignforuncertainnonlinearsystemswithunmeasurablepremisevariables AT afeffekih fuzzyresetbaseditalichitalicsubx221esubunknowninputobserverdesignforuncertainnonlinearsystemswithunmeasurablepremisevariables |
_version_ |
1718426044053061632 |