Large-scale 3-D interconnected Ni nanotube networks with controlled structural and magnetic properties
Abstract Large-scale, electrically interconnected three-dimensional (3-D) Ni crossed nanotube networks have been fabricated using an electrochemical dealloying method within the crossed nanopores of polymer host membranes. This method paves the way for the easy and cost-effective fabrication of 3-D...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/4216a8496725471a87f9299b65ff88b2 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:4216a8496725471a87f9299b65ff88b2 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:4216a8496725471a87f9299b65ff88b22021-12-02T15:07:57ZLarge-scale 3-D interconnected Ni nanotube networks with controlled structural and magnetic properties10.1038/s41598-018-32437-82045-2322https://doaj.org/article/4216a8496725471a87f9299b65ff88b22018-09-01T00:00:00Zhttps://doi.org/10.1038/s41598-018-32437-8https://doaj.org/toc/2045-2322Abstract Large-scale, electrically interconnected three-dimensional (3-D) Ni crossed nanotube networks have been fabricated using an electrochemical dealloying method within the crossed nanopores of polymer host membranes. This method paves the way for the easy and cost-effective fabrication of 3-D magnetic NT networks with precise spatial arrangement and diameter and wall thickness of 10–100 nm controlled individually. The excellent control over geometrical parameters and morphological features of the Ni crossed nanotube networks leads to tunable magnetic and magneto-transport properties. Particularly, the low field magneto-transport behavior is consistent with the expected vortex-like states formed in different segments of the nanotube scaffold, whereas nucleation of domain walls at the intersection of the nanowire segments play a dominant role in the solid crossed nanowire networks counterpart. The present 3-D networks of nanomagnets are of special interest due to their potential for memory devices, computing architectures, sensing and biomedical applications.Joaquín de la Torre MedinaTristan da Câmara Santa Clara GomesYenni G. Velázquez GalvánLuc PirauxNature PortfolioarticleNanotube Cross (CNT)Nanowire Cross (CNW)Magneto-transport PropertiesMagnetotransport BehaviorElectrochemical DealloyingMedicineRScienceQENScientific Reports, Vol 8, Iss 1, Pp 1-11 (2018) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Nanotube Cross (CNT) Nanowire Cross (CNW) Magneto-transport Properties Magnetotransport Behavior Electrochemical Dealloying Medicine R Science Q |
spellingShingle |
Nanotube Cross (CNT) Nanowire Cross (CNW) Magneto-transport Properties Magnetotransport Behavior Electrochemical Dealloying Medicine R Science Q Joaquín de la Torre Medina Tristan da Câmara Santa Clara Gomes Yenni G. Velázquez Galván Luc Piraux Large-scale 3-D interconnected Ni nanotube networks with controlled structural and magnetic properties |
description |
Abstract Large-scale, electrically interconnected three-dimensional (3-D) Ni crossed nanotube networks have been fabricated using an electrochemical dealloying method within the crossed nanopores of polymer host membranes. This method paves the way for the easy and cost-effective fabrication of 3-D magnetic NT networks with precise spatial arrangement and diameter and wall thickness of 10–100 nm controlled individually. The excellent control over geometrical parameters and morphological features of the Ni crossed nanotube networks leads to tunable magnetic and magneto-transport properties. Particularly, the low field magneto-transport behavior is consistent with the expected vortex-like states formed in different segments of the nanotube scaffold, whereas nucleation of domain walls at the intersection of the nanowire segments play a dominant role in the solid crossed nanowire networks counterpart. The present 3-D networks of nanomagnets are of special interest due to their potential for memory devices, computing architectures, sensing and biomedical applications. |
format |
article |
author |
Joaquín de la Torre Medina Tristan da Câmara Santa Clara Gomes Yenni G. Velázquez Galván Luc Piraux |
author_facet |
Joaquín de la Torre Medina Tristan da Câmara Santa Clara Gomes Yenni G. Velázquez Galván Luc Piraux |
author_sort |
Joaquín de la Torre Medina |
title |
Large-scale 3-D interconnected Ni nanotube networks with controlled structural and magnetic properties |
title_short |
Large-scale 3-D interconnected Ni nanotube networks with controlled structural and magnetic properties |
title_full |
Large-scale 3-D interconnected Ni nanotube networks with controlled structural and magnetic properties |
title_fullStr |
Large-scale 3-D interconnected Ni nanotube networks with controlled structural and magnetic properties |
title_full_unstemmed |
Large-scale 3-D interconnected Ni nanotube networks with controlled structural and magnetic properties |
title_sort |
large-scale 3-d interconnected ni nanotube networks with controlled structural and magnetic properties |
publisher |
Nature Portfolio |
publishDate |
2018 |
url |
https://doaj.org/article/4216a8496725471a87f9299b65ff88b2 |
work_keys_str_mv |
AT joaquindelatorremedina largescale3dinterconnectedninanotubenetworkswithcontrolledstructuralandmagneticproperties AT tristandacamarasantaclaragomes largescale3dinterconnectedninanotubenetworkswithcontrolledstructuralandmagneticproperties AT yennigvelazquezgalvan largescale3dinterconnectedninanotubenetworkswithcontrolledstructuralandmagneticproperties AT lucpiraux largescale3dinterconnectedninanotubenetworkswithcontrolledstructuralandmagneticproperties |
_version_ |
1718388309769584640 |