Synthetic ferrimagnet nanowires with very low critical current density for coupled domain wall motion

Abstract Domain walls in ferromagnetic nanowires are potential building-blocks of future technologies such as racetrack memories, in which data encoded in the domain walls are transported using spin-polarised currents. However, the development of energy-efficient devices has been hampered by the hig...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Serban Lepadatu, Henri Saarikoski, Robert Beacham, Maria Jose Benitez, Thomas A. Moore, Gavin Burnell, Satoshi Sugimoto, Daniel Yesudas, May C. Wheeler, Jorge Miguel, Sarnjeet S. Dhesi, Damien McGrouther, Stephen McVitie, Gen Tatara, Christopher H. Marrows
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
R
Q
Acceso en línea:https://doaj.org/article/421ac66b213348bda4f0e25d451497a0
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:421ac66b213348bda4f0e25d451497a0
record_format dspace
spelling oai:doaj.org-article:421ac66b213348bda4f0e25d451497a02021-12-02T16:06:12ZSynthetic ferrimagnet nanowires with very low critical current density for coupled domain wall motion10.1038/s41598-017-01748-72045-2322https://doaj.org/article/421ac66b213348bda4f0e25d451497a02017-05-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-01748-7https://doaj.org/toc/2045-2322Abstract Domain walls in ferromagnetic nanowires are potential building-blocks of future technologies such as racetrack memories, in which data encoded in the domain walls are transported using spin-polarised currents. However, the development of energy-efficient devices has been hampered by the high current densities needed to initiate domain wall motion. We show here that a remarkable reduction in the critical current density can be achieved for in-plane magnetised coupled domain walls in CoFe/Ru/CoFe synthetic ferrimagnet tracks. The antiferromagnetic exchange coupling between the layers leads to simple Néel wall structures, imaged using photoemission electron and Lorentz transmission electron microscopy, with a width of only ~100 nm. The measured critical current density to set these walls in motion, detected using magnetotransport measurements, is 1.0 × 1011 Am−2, almost an order of magnitude lower than in a ferromagnetically coupled control sample. Theoretical modelling indicates that this is due to nonadiabatic driving of anisotropically coupled walls, a mechanism that can be used to design efficient domain-wall devices.Serban LepadatuHenri SaarikoskiRobert BeachamMaria Jose BenitezThomas A. MooreGavin BurnellSatoshi SugimotoDaniel YesudasMay C. WheelerJorge MiguelSarnjeet S. DhesiDamien McGroutherStephen McVitieGen TataraChristopher H. MarrowsNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-10 (2017)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Serban Lepadatu
Henri Saarikoski
Robert Beacham
Maria Jose Benitez
Thomas A. Moore
Gavin Burnell
Satoshi Sugimoto
Daniel Yesudas
May C. Wheeler
Jorge Miguel
Sarnjeet S. Dhesi
Damien McGrouther
Stephen McVitie
Gen Tatara
Christopher H. Marrows
Synthetic ferrimagnet nanowires with very low critical current density for coupled domain wall motion
description Abstract Domain walls in ferromagnetic nanowires are potential building-blocks of future technologies such as racetrack memories, in which data encoded in the domain walls are transported using spin-polarised currents. However, the development of energy-efficient devices has been hampered by the high current densities needed to initiate domain wall motion. We show here that a remarkable reduction in the critical current density can be achieved for in-plane magnetised coupled domain walls in CoFe/Ru/CoFe synthetic ferrimagnet tracks. The antiferromagnetic exchange coupling between the layers leads to simple Néel wall structures, imaged using photoemission electron and Lorentz transmission electron microscopy, with a width of only ~100 nm. The measured critical current density to set these walls in motion, detected using magnetotransport measurements, is 1.0 × 1011 Am−2, almost an order of magnitude lower than in a ferromagnetically coupled control sample. Theoretical modelling indicates that this is due to nonadiabatic driving of anisotropically coupled walls, a mechanism that can be used to design efficient domain-wall devices.
format article
author Serban Lepadatu
Henri Saarikoski
Robert Beacham
Maria Jose Benitez
Thomas A. Moore
Gavin Burnell
Satoshi Sugimoto
Daniel Yesudas
May C. Wheeler
Jorge Miguel
Sarnjeet S. Dhesi
Damien McGrouther
Stephen McVitie
Gen Tatara
Christopher H. Marrows
author_facet Serban Lepadatu
Henri Saarikoski
Robert Beacham
Maria Jose Benitez
Thomas A. Moore
Gavin Burnell
Satoshi Sugimoto
Daniel Yesudas
May C. Wheeler
Jorge Miguel
Sarnjeet S. Dhesi
Damien McGrouther
Stephen McVitie
Gen Tatara
Christopher H. Marrows
author_sort Serban Lepadatu
title Synthetic ferrimagnet nanowires with very low critical current density for coupled domain wall motion
title_short Synthetic ferrimagnet nanowires with very low critical current density for coupled domain wall motion
title_full Synthetic ferrimagnet nanowires with very low critical current density for coupled domain wall motion
title_fullStr Synthetic ferrimagnet nanowires with very low critical current density for coupled domain wall motion
title_full_unstemmed Synthetic ferrimagnet nanowires with very low critical current density for coupled domain wall motion
title_sort synthetic ferrimagnet nanowires with very low critical current density for coupled domain wall motion
publisher Nature Portfolio
publishDate 2017
url https://doaj.org/article/421ac66b213348bda4f0e25d451497a0
work_keys_str_mv AT serbanlepadatu syntheticferrimagnetnanowireswithverylowcriticalcurrentdensityforcoupleddomainwallmotion
AT henrisaarikoski syntheticferrimagnetnanowireswithverylowcriticalcurrentdensityforcoupleddomainwallmotion
AT robertbeacham syntheticferrimagnetnanowireswithverylowcriticalcurrentdensityforcoupleddomainwallmotion
AT mariajosebenitez syntheticferrimagnetnanowireswithverylowcriticalcurrentdensityforcoupleddomainwallmotion
AT thomasamoore syntheticferrimagnetnanowireswithverylowcriticalcurrentdensityforcoupleddomainwallmotion
AT gavinburnell syntheticferrimagnetnanowireswithverylowcriticalcurrentdensityforcoupleddomainwallmotion
AT satoshisugimoto syntheticferrimagnetnanowireswithverylowcriticalcurrentdensityforcoupleddomainwallmotion
AT danielyesudas syntheticferrimagnetnanowireswithverylowcriticalcurrentdensityforcoupleddomainwallmotion
AT maycwheeler syntheticferrimagnetnanowireswithverylowcriticalcurrentdensityforcoupleddomainwallmotion
AT jorgemiguel syntheticferrimagnetnanowireswithverylowcriticalcurrentdensityforcoupleddomainwallmotion
AT sarnjeetsdhesi syntheticferrimagnetnanowireswithverylowcriticalcurrentdensityforcoupleddomainwallmotion
AT damienmcgrouther syntheticferrimagnetnanowireswithverylowcriticalcurrentdensityforcoupleddomainwallmotion
AT stephenmcvitie syntheticferrimagnetnanowireswithverylowcriticalcurrentdensityforcoupleddomainwallmotion
AT gentatara syntheticferrimagnetnanowireswithverylowcriticalcurrentdensityforcoupleddomainwallmotion
AT christopherhmarrows syntheticferrimagnetnanowireswithverylowcriticalcurrentdensityforcoupleddomainwallmotion
_version_ 1718385082193936384