Assessing the longitudinal measurement invariance of the Force Concept Inventory and the Conceptual Survey of Electricity and Magnetism
Concept inventories (CIs) are commonly used in pre-post instruction to study student conceptual change. For consistency in assessment interpretation, a CI’s assessment construct is desired to maintain invariance across different test times. In this study, the longitudinal measurement invariance (LMI...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
American Physical Society
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/421b6fd5cafa485aacafc95110746890 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:421b6fd5cafa485aacafc95110746890 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:421b6fd5cafa485aacafc951107468902021-12-02T10:59:50ZAssessing the longitudinal measurement invariance of the Force Concept Inventory and the Conceptual Survey of Electricity and Magnetism10.1103/PhysRevPhysEducRes.16.0201032469-9896https://doaj.org/article/421b6fd5cafa485aacafc951107468902020-07-01T00:00:00Zhttp://doi.org/10.1103/PhysRevPhysEducRes.16.020103http://doi.org/10.1103/PhysRevPhysEducRes.16.020103https://doaj.org/toc/2469-9896Concept inventories (CIs) are commonly used in pre-post instruction to study student conceptual change. For consistency in assessment interpretation, a CI’s assessment construct is desired to maintain invariance across different test times. In this study, the longitudinal measurement invariance (LMI) analysis under the confirmatory factor analysis framework was used to examine the stability of the factor structure between pretest and post-test of two commonly used CIs, i.e., the Force Concept Inventory (FCI) and Conceptual Survey of Electricity and Magnetism (CSEM). A number of existing and modified models were examined in this paper. The results confirmed that all factor models of the FCI fitted well with both pre- and post-test data. For CSEM, acceptable fits were obtained with a reduced version of the CI. When reliability analysis was performed for the factors of these models, most modified models were found to be more reliable than the existing models. The modified models were further tested in LMI analysis, in which a sequence of models with increasingly restrictive parameter constraints was examined. For the FCI, LMI analysis demonstrated the existence of partial strict invariance, i.e., common factor structures, factor loadings, and item thresholds, and equally observed residual variances for all the items except items 2 and 29. For the CSEM, after excluding 10 items, a reduced version was found to hold the strict invariance criteria. These findings reveal that changes in scores of the whole FCI and the reduced CSEM can be attributed to changes in the latent constructs measured by the CIs, which confirms these two CIs as reliable instruments to study students’ conceptual change over time in introductory physics courses.Yang XiaoGuiqing XuJing HanHua XiaoJianwen XiongLei BaoAmerican Physical SocietyarticleSpecial aspects of educationLC8-6691PhysicsQC1-999ENPhysical Review Physics Education Research, Vol 16, Iss 2, p 020103 (2020) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Special aspects of education LC8-6691 Physics QC1-999 |
spellingShingle |
Special aspects of education LC8-6691 Physics QC1-999 Yang Xiao Guiqing Xu Jing Han Hua Xiao Jianwen Xiong Lei Bao Assessing the longitudinal measurement invariance of the Force Concept Inventory and the Conceptual Survey of Electricity and Magnetism |
description |
Concept inventories (CIs) are commonly used in pre-post instruction to study student conceptual change. For consistency in assessment interpretation, a CI’s assessment construct is desired to maintain invariance across different test times. In this study, the longitudinal measurement invariance (LMI) analysis under the confirmatory factor analysis framework was used to examine the stability of the factor structure between pretest and post-test of two commonly used CIs, i.e., the Force Concept Inventory (FCI) and Conceptual Survey of Electricity and Magnetism (CSEM). A number of existing and modified models were examined in this paper. The results confirmed that all factor models of the FCI fitted well with both pre- and post-test data. For CSEM, acceptable fits were obtained with a reduced version of the CI. When reliability analysis was performed for the factors of these models, most modified models were found to be more reliable than the existing models. The modified models were further tested in LMI analysis, in which a sequence of models with increasingly restrictive parameter constraints was examined. For the FCI, LMI analysis demonstrated the existence of partial strict invariance, i.e., common factor structures, factor loadings, and item thresholds, and equally observed residual variances for all the items except items 2 and 29. For the CSEM, after excluding 10 items, a reduced version was found to hold the strict invariance criteria. These findings reveal that changes in scores of the whole FCI and the reduced CSEM can be attributed to changes in the latent constructs measured by the CIs, which confirms these two CIs as reliable instruments to study students’ conceptual change over time in introductory physics courses. |
format |
article |
author |
Yang Xiao Guiqing Xu Jing Han Hua Xiao Jianwen Xiong Lei Bao |
author_facet |
Yang Xiao Guiqing Xu Jing Han Hua Xiao Jianwen Xiong Lei Bao |
author_sort |
Yang Xiao |
title |
Assessing the longitudinal measurement invariance of the Force Concept Inventory and the Conceptual Survey of Electricity and Magnetism |
title_short |
Assessing the longitudinal measurement invariance of the Force Concept Inventory and the Conceptual Survey of Electricity and Magnetism |
title_full |
Assessing the longitudinal measurement invariance of the Force Concept Inventory and the Conceptual Survey of Electricity and Magnetism |
title_fullStr |
Assessing the longitudinal measurement invariance of the Force Concept Inventory and the Conceptual Survey of Electricity and Magnetism |
title_full_unstemmed |
Assessing the longitudinal measurement invariance of the Force Concept Inventory and the Conceptual Survey of Electricity and Magnetism |
title_sort |
assessing the longitudinal measurement invariance of the force concept inventory and the conceptual survey of electricity and magnetism |
publisher |
American Physical Society |
publishDate |
2020 |
url |
https://doaj.org/article/421b6fd5cafa485aacafc95110746890 |
work_keys_str_mv |
AT yangxiao assessingthelongitudinalmeasurementinvarianceoftheforceconceptinventoryandtheconceptualsurveyofelectricityandmagnetism AT guiqingxu assessingthelongitudinalmeasurementinvarianceoftheforceconceptinventoryandtheconceptualsurveyofelectricityandmagnetism AT jinghan assessingthelongitudinalmeasurementinvarianceoftheforceconceptinventoryandtheconceptualsurveyofelectricityandmagnetism AT huaxiao assessingthelongitudinalmeasurementinvarianceoftheforceconceptinventoryandtheconceptualsurveyofelectricityandmagnetism AT jianwenxiong assessingthelongitudinalmeasurementinvarianceoftheforceconceptinventoryandtheconceptualsurveyofelectricityandmagnetism AT leibao assessingthelongitudinalmeasurementinvarianceoftheforceconceptinventoryandtheconceptualsurveyofelectricityandmagnetism |
_version_ |
1718396348479307776 |