Efficient spline regression for neural spiking data.
Point process generalized linear models (GLMs) provide a powerful tool for characterizing the coding properties of neural populations. Spline basis functions are often used in point process GLMs, when the relationship between the spiking and driving signals are nonlinear, but common choices for the...
Guardado en:
Autores principales: | Mehrad Sarmashghi, Shantanu P Jadhav, Uri Eden |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/421c6fb4493245adaf4e5522c2781e96 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Analyzing Single Molecule Localization Microscopy Data Using Cubic Splines
por: Hazen P. Babcock, et al.
Publicado: (2017) -
Modeling of Indonesia Composite Index using Artificial Neural Network and Multivariate Adaptive Regression Spline (retracted)
por: Mutia Yollanda, et al.
Publicado: (2019) -
The Application of Mixed Smoothing Spline and Fourier Series Model in Nonparametric Regression
por: Ni Putu Ayu Mirah Mariati, et al.
Publicado: (2021) -
FNS allows efficient event-driven spiking neural network simulations based on a neuron model supporting spike latency
por: Gianluca Susi, et al.
Publicado: (2021) -
Multivariate Adaptive Regression Splines (MARS) for Modeling Student Status at Universitas Terbuka
por: Siti Hadijah Hasanah
Publicado: (2021)