A validation study comparing existing prediction models of acute kidney injury in patients with acute heart failure
Abstract Acute kidney injury (AKI) is a common complication in acute heart failure (AHF) and is associated with prolonged hospitalization and increased mortality. The aim of this study was to externally validate existing prediction models of AKI in patients with AHF. Data for 10,364 patients hospita...
Guardado en:
Autores principales: | , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/42398b7586e4472497042c4d8177ac66 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:42398b7586e4472497042c4d8177ac66 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:42398b7586e4472497042c4d8177ac662021-12-02T16:53:00ZA validation study comparing existing prediction models of acute kidney injury in patients with acute heart failure10.1038/s41598-021-90756-92045-2322https://doaj.org/article/42398b7586e4472497042c4d8177ac662021-05-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-90756-9https://doaj.org/toc/2045-2322Abstract Acute kidney injury (AKI) is a common complication in acute heart failure (AHF) and is associated with prolonged hospitalization and increased mortality. The aim of this study was to externally validate existing prediction models of AKI in patients with AHF. Data for 10,364 patients hospitalized for acute heart failure between 2008 and 2018 were extracted from the Chang Gung Research Database and analysed. The primary outcome of interest was AKI, defined according to the KDIGO definition. The area under the receiver operating characteristic (AUC) curve was used to assess the discrimination performance of each prediction model. Five existing prediction models were externally validated, and the Forman risk score and the prediction model reported by Wang et al. showed the most favourable discrimination and calibration performance. The Forman risk score had AUCs for discriminating AKI, AKI stage 3, and dialysis within 7 days of 0.696, 0.829, and 0.817, respectively. The Wang et al. model had AUCs for discriminating AKI, AKI stage 3, and dialysis within 7 days of 0.73, 0.858, and 0.845, respectively. The Forman risk score and the Wang et al. prediction model are simple and accurate tools for predicting AKI in patients with AHF.Tao Han LeePei-Chun FanJia-Jin ChenVictor Chien‐Chia WuCheng-Chia LeeChieh-Li YenGeorge KuoHsiang-Hao HsuYa-Chung TianChih-Hsiang ChangNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-11 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Tao Han Lee Pei-Chun Fan Jia-Jin Chen Victor Chien‐Chia Wu Cheng-Chia Lee Chieh-Li Yen George Kuo Hsiang-Hao Hsu Ya-Chung Tian Chih-Hsiang Chang A validation study comparing existing prediction models of acute kidney injury in patients with acute heart failure |
description |
Abstract Acute kidney injury (AKI) is a common complication in acute heart failure (AHF) and is associated with prolonged hospitalization and increased mortality. The aim of this study was to externally validate existing prediction models of AKI in patients with AHF. Data for 10,364 patients hospitalized for acute heart failure between 2008 and 2018 were extracted from the Chang Gung Research Database and analysed. The primary outcome of interest was AKI, defined according to the KDIGO definition. The area under the receiver operating characteristic (AUC) curve was used to assess the discrimination performance of each prediction model. Five existing prediction models were externally validated, and the Forman risk score and the prediction model reported by Wang et al. showed the most favourable discrimination and calibration performance. The Forman risk score had AUCs for discriminating AKI, AKI stage 3, and dialysis within 7 days of 0.696, 0.829, and 0.817, respectively. The Wang et al. model had AUCs for discriminating AKI, AKI stage 3, and dialysis within 7 days of 0.73, 0.858, and 0.845, respectively. The Forman risk score and the Wang et al. prediction model are simple and accurate tools for predicting AKI in patients with AHF. |
format |
article |
author |
Tao Han Lee Pei-Chun Fan Jia-Jin Chen Victor Chien‐Chia Wu Cheng-Chia Lee Chieh-Li Yen George Kuo Hsiang-Hao Hsu Ya-Chung Tian Chih-Hsiang Chang |
author_facet |
Tao Han Lee Pei-Chun Fan Jia-Jin Chen Victor Chien‐Chia Wu Cheng-Chia Lee Chieh-Li Yen George Kuo Hsiang-Hao Hsu Ya-Chung Tian Chih-Hsiang Chang |
author_sort |
Tao Han Lee |
title |
A validation study comparing existing prediction models of acute kidney injury in patients with acute heart failure |
title_short |
A validation study comparing existing prediction models of acute kidney injury in patients with acute heart failure |
title_full |
A validation study comparing existing prediction models of acute kidney injury in patients with acute heart failure |
title_fullStr |
A validation study comparing existing prediction models of acute kidney injury in patients with acute heart failure |
title_full_unstemmed |
A validation study comparing existing prediction models of acute kidney injury in patients with acute heart failure |
title_sort |
validation study comparing existing prediction models of acute kidney injury in patients with acute heart failure |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/42398b7586e4472497042c4d8177ac66 |
work_keys_str_mv |
AT taohanlee avalidationstudycomparingexistingpredictionmodelsofacutekidneyinjuryinpatientswithacuteheartfailure AT peichunfan avalidationstudycomparingexistingpredictionmodelsofacutekidneyinjuryinpatientswithacuteheartfailure AT jiajinchen avalidationstudycomparingexistingpredictionmodelsofacutekidneyinjuryinpatientswithacuteheartfailure AT victorchienchiawu avalidationstudycomparingexistingpredictionmodelsofacutekidneyinjuryinpatientswithacuteheartfailure AT chengchialee avalidationstudycomparingexistingpredictionmodelsofacutekidneyinjuryinpatientswithacuteheartfailure AT chiehliyen avalidationstudycomparingexistingpredictionmodelsofacutekidneyinjuryinpatientswithacuteheartfailure AT georgekuo avalidationstudycomparingexistingpredictionmodelsofacutekidneyinjuryinpatientswithacuteheartfailure AT hsianghaohsu avalidationstudycomparingexistingpredictionmodelsofacutekidneyinjuryinpatientswithacuteheartfailure AT yachungtian avalidationstudycomparingexistingpredictionmodelsofacutekidneyinjuryinpatientswithacuteheartfailure AT chihhsiangchang avalidationstudycomparingexistingpredictionmodelsofacutekidneyinjuryinpatientswithacuteheartfailure AT taohanlee validationstudycomparingexistingpredictionmodelsofacutekidneyinjuryinpatientswithacuteheartfailure AT peichunfan validationstudycomparingexistingpredictionmodelsofacutekidneyinjuryinpatientswithacuteheartfailure AT jiajinchen validationstudycomparingexistingpredictionmodelsofacutekidneyinjuryinpatientswithacuteheartfailure AT victorchienchiawu validationstudycomparingexistingpredictionmodelsofacutekidneyinjuryinpatientswithacuteheartfailure AT chengchialee validationstudycomparingexistingpredictionmodelsofacutekidneyinjuryinpatientswithacuteheartfailure AT chiehliyen validationstudycomparingexistingpredictionmodelsofacutekidneyinjuryinpatientswithacuteheartfailure AT georgekuo validationstudycomparingexistingpredictionmodelsofacutekidneyinjuryinpatientswithacuteheartfailure AT hsianghaohsu validationstudycomparingexistingpredictionmodelsofacutekidneyinjuryinpatientswithacuteheartfailure AT yachungtian validationstudycomparingexistingpredictionmodelsofacutekidneyinjuryinpatientswithacuteheartfailure AT chihhsiangchang validationstudycomparingexistingpredictionmodelsofacutekidneyinjuryinpatientswithacuteheartfailure |
_version_ |
1718382852616224768 |