On the Achievable Rate Region of the <i>K</i>-Receiver Broadcast Channels via Exhaustive Message Splitting
This paper focuses on <i>K</i>-receiver discrete-time memoryless broadcast channels (DM-BCs) with private messages, where the transmitter wishes to convey <i>K</i> private messages to <i>K</i> receivers. A general inner bound on the capacity region is proposed bas...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/42428703bd874d18b795406103efb14e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | This paper focuses on <i>K</i>-receiver discrete-time memoryless broadcast channels (DM-BCs) with private messages, where the transmitter wishes to convey <i>K</i> private messages to <i>K</i> receivers. A general inner bound on the capacity region is proposed based on an exhaustive message splitting and a <i>K</i>-level modified Marton’s coding. The key idea is to split every message into <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mo>∑</mo><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mi>K</mi></msubsup><mfenced separators="" open="(" close=")"><mfrac linethickness="0pt"><mi>K</mi><mrow><mi>j</mi><mo>−</mo><mn>1</mn></mrow></mfrac></mfenced></mrow></semantics></math></inline-formula> submessages each corresponding to a set of users who are assigned to recover them, and then send these submessages via codewords chosen from a <i>K</i>-level structure codebooks. To guarantee the joint typicality among all transmitted codewords, a sufficient condition on the subcodebooks’ sizes is derived through a newly establishing hierarchical covering lemma, which extends the 2-level multivariate covering lemma to the <i>K</i>-level case with more intricate dependences. As the number of auxiliary random variables and rate conditions both increase exponentially with <i>K</i>, the standard Fourier–Motzkin elimination procedure becomes infeasible when <i>K</i> is large. To tackle this problem, we obtain a <i>closed form</i> of achievable rate region with a special observation of disjoint unions of sets that constitute the power set of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mo>⋯</mo><mo>,</mo><mi>K</mi><mo>}</mo></mrow></semantics></math></inline-formula>. The proposed achievable rate region allows arbitrary input probability mass functions and improves over previously known achievable (closed form) rate regions for <i>K</i>-receiver (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>K</mi><mo>≥</mo><mn>3</mn></mrow></semantics></math></inline-formula>) BCs. |
---|