A proof-of-concept study of the in-vivo validation of a computational fluid dynamics model of personalized radioembolization

Abstract Radioembolization (RE) with yttrium-90 (90Y) microspheres, a transcatheter intraarterial therapy for patients with liver cancer, can be modeled computationally. The purpose of this work was to correlate the results obtained with this methodology using in vivo data, so that this computationa...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Raúl Antón, Javier Antoñana, Jorge Aramburu, Ana Ezponda, Elena Prieto, Asier Andonegui, Julio Ortega, Isabel Vivas, Lidia Sancho, Bruno Sangro, José Ignacio Bilbao, Macarena Rodríguez-Fraile
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/42469bf5b02449e0965b8a0d6c87bc54
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:42469bf5b02449e0965b8a0d6c87bc54
record_format dspace
spelling oai:doaj.org-article:42469bf5b02449e0965b8a0d6c87bc542021-12-02T10:54:22ZA proof-of-concept study of the in-vivo validation of a computational fluid dynamics model of personalized radioembolization10.1038/s41598-021-83414-72045-2322https://doaj.org/article/42469bf5b02449e0965b8a0d6c87bc542021-02-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-83414-7https://doaj.org/toc/2045-2322Abstract Radioembolization (RE) with yttrium-90 (90Y) microspheres, a transcatheter intraarterial therapy for patients with liver cancer, can be modeled computationally. The purpose of this work was to correlate the results obtained with this methodology using in vivo data, so that this computational tool could be used for the optimization of the RE procedure. The hepatic artery three-dimensional (3D) hemodynamics and microsphere distribution during RE were modeled for six 90Y-loaded microsphere infusions in three patients with hepatocellular carcinoma using a commercially available computational fluid dynamics (CFD) software package. The model was built based on in vivo data acquired during the pretreatment stage. The results of the simulations were compared with the in vivo distribution assessed by 90Y PET/CT. Specifically, the microsphere distribution predicted was compared with the actual 90Y activity per liver segment with a commercially available 3D-voxel dosimetry software (PLANET Dose, DOSIsoft). The average difference between the CFD-based and the PET/CT-based activity distribution was 2.36 percentage points for Patient 1, 3.51 percentage points for Patient 2 and 2.02 percentage points for Patient 3. These results suggest that CFD simulations may help to predict 90Y-microsphere distribution after RE and could be used to optimize the RE procedure on a patient-specific basis.Raúl AntónJavier AntoñanaJorge AramburuAna EzpondaElena PrietoAsier AndoneguiJulio OrtegaIsabel VivasLidia SanchoBruno SangroJosé Ignacio BilbaoMacarena Rodríguez-FraileNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-12 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Raúl Antón
Javier Antoñana
Jorge Aramburu
Ana Ezponda
Elena Prieto
Asier Andonegui
Julio Ortega
Isabel Vivas
Lidia Sancho
Bruno Sangro
José Ignacio Bilbao
Macarena Rodríguez-Fraile
A proof-of-concept study of the in-vivo validation of a computational fluid dynamics model of personalized radioembolization
description Abstract Radioembolization (RE) with yttrium-90 (90Y) microspheres, a transcatheter intraarterial therapy for patients with liver cancer, can be modeled computationally. The purpose of this work was to correlate the results obtained with this methodology using in vivo data, so that this computational tool could be used for the optimization of the RE procedure. The hepatic artery three-dimensional (3D) hemodynamics and microsphere distribution during RE were modeled for six 90Y-loaded microsphere infusions in three patients with hepatocellular carcinoma using a commercially available computational fluid dynamics (CFD) software package. The model was built based on in vivo data acquired during the pretreatment stage. The results of the simulations were compared with the in vivo distribution assessed by 90Y PET/CT. Specifically, the microsphere distribution predicted was compared with the actual 90Y activity per liver segment with a commercially available 3D-voxel dosimetry software (PLANET Dose, DOSIsoft). The average difference between the CFD-based and the PET/CT-based activity distribution was 2.36 percentage points for Patient 1, 3.51 percentage points for Patient 2 and 2.02 percentage points for Patient 3. These results suggest that CFD simulations may help to predict 90Y-microsphere distribution after RE and could be used to optimize the RE procedure on a patient-specific basis.
format article
author Raúl Antón
Javier Antoñana
Jorge Aramburu
Ana Ezponda
Elena Prieto
Asier Andonegui
Julio Ortega
Isabel Vivas
Lidia Sancho
Bruno Sangro
José Ignacio Bilbao
Macarena Rodríguez-Fraile
author_facet Raúl Antón
Javier Antoñana
Jorge Aramburu
Ana Ezponda
Elena Prieto
Asier Andonegui
Julio Ortega
Isabel Vivas
Lidia Sancho
Bruno Sangro
José Ignacio Bilbao
Macarena Rodríguez-Fraile
author_sort Raúl Antón
title A proof-of-concept study of the in-vivo validation of a computational fluid dynamics model of personalized radioembolization
title_short A proof-of-concept study of the in-vivo validation of a computational fluid dynamics model of personalized radioembolization
title_full A proof-of-concept study of the in-vivo validation of a computational fluid dynamics model of personalized radioembolization
title_fullStr A proof-of-concept study of the in-vivo validation of a computational fluid dynamics model of personalized radioembolization
title_full_unstemmed A proof-of-concept study of the in-vivo validation of a computational fluid dynamics model of personalized radioembolization
title_sort proof-of-concept study of the in-vivo validation of a computational fluid dynamics model of personalized radioembolization
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/42469bf5b02449e0965b8a0d6c87bc54
work_keys_str_mv AT raulanton aproofofconceptstudyoftheinvivovalidationofacomputationalfluiddynamicsmodelofpersonalizedradioembolization
AT javierantonana aproofofconceptstudyoftheinvivovalidationofacomputationalfluiddynamicsmodelofpersonalizedradioembolization
AT jorgearamburu aproofofconceptstudyoftheinvivovalidationofacomputationalfluiddynamicsmodelofpersonalizedradioembolization
AT anaezponda aproofofconceptstudyoftheinvivovalidationofacomputationalfluiddynamicsmodelofpersonalizedradioembolization
AT elenaprieto aproofofconceptstudyoftheinvivovalidationofacomputationalfluiddynamicsmodelofpersonalizedradioembolization
AT asierandonegui aproofofconceptstudyoftheinvivovalidationofacomputationalfluiddynamicsmodelofpersonalizedradioembolization
AT julioortega aproofofconceptstudyoftheinvivovalidationofacomputationalfluiddynamicsmodelofpersonalizedradioembolization
AT isabelvivas aproofofconceptstudyoftheinvivovalidationofacomputationalfluiddynamicsmodelofpersonalizedradioembolization
AT lidiasancho aproofofconceptstudyoftheinvivovalidationofacomputationalfluiddynamicsmodelofpersonalizedradioembolization
AT brunosangro aproofofconceptstudyoftheinvivovalidationofacomputationalfluiddynamicsmodelofpersonalizedradioembolization
AT joseignaciobilbao aproofofconceptstudyoftheinvivovalidationofacomputationalfluiddynamicsmodelofpersonalizedradioembolization
AT macarenarodriguezfraile aproofofconceptstudyoftheinvivovalidationofacomputationalfluiddynamicsmodelofpersonalizedradioembolization
AT raulanton proofofconceptstudyoftheinvivovalidationofacomputationalfluiddynamicsmodelofpersonalizedradioembolization
AT javierantonana proofofconceptstudyoftheinvivovalidationofacomputationalfluiddynamicsmodelofpersonalizedradioembolization
AT jorgearamburu proofofconceptstudyoftheinvivovalidationofacomputationalfluiddynamicsmodelofpersonalizedradioembolization
AT anaezponda proofofconceptstudyoftheinvivovalidationofacomputationalfluiddynamicsmodelofpersonalizedradioembolization
AT elenaprieto proofofconceptstudyoftheinvivovalidationofacomputationalfluiddynamicsmodelofpersonalizedradioembolization
AT asierandonegui proofofconceptstudyoftheinvivovalidationofacomputationalfluiddynamicsmodelofpersonalizedradioembolization
AT julioortega proofofconceptstudyoftheinvivovalidationofacomputationalfluiddynamicsmodelofpersonalizedradioembolization
AT isabelvivas proofofconceptstudyoftheinvivovalidationofacomputationalfluiddynamicsmodelofpersonalizedradioembolization
AT lidiasancho proofofconceptstudyoftheinvivovalidationofacomputationalfluiddynamicsmodelofpersonalizedradioembolization
AT brunosangro proofofconceptstudyoftheinvivovalidationofacomputationalfluiddynamicsmodelofpersonalizedradioembolization
AT joseignaciobilbao proofofconceptstudyoftheinvivovalidationofacomputationalfluiddynamicsmodelofpersonalizedradioembolization
AT macarenarodriguezfraile proofofconceptstudyoftheinvivovalidationofacomputationalfluiddynamicsmodelofpersonalizedradioembolization
_version_ 1718396464465444864