A proof-of-concept study of the in-vivo validation of a computational fluid dynamics model of personalized radioembolization
Abstract Radioembolization (RE) with yttrium-90 (90Y) microspheres, a transcatheter intraarterial therapy for patients with liver cancer, can be modeled computationally. The purpose of this work was to correlate the results obtained with this methodology using in vivo data, so that this computationa...
Guardado en:
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/42469bf5b02449e0965b8a0d6c87bc54 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:42469bf5b02449e0965b8a0d6c87bc54 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:42469bf5b02449e0965b8a0d6c87bc542021-12-02T10:54:22ZA proof-of-concept study of the in-vivo validation of a computational fluid dynamics model of personalized radioembolization10.1038/s41598-021-83414-72045-2322https://doaj.org/article/42469bf5b02449e0965b8a0d6c87bc542021-02-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-83414-7https://doaj.org/toc/2045-2322Abstract Radioembolization (RE) with yttrium-90 (90Y) microspheres, a transcatheter intraarterial therapy for patients with liver cancer, can be modeled computationally. The purpose of this work was to correlate the results obtained with this methodology using in vivo data, so that this computational tool could be used for the optimization of the RE procedure. The hepatic artery three-dimensional (3D) hemodynamics and microsphere distribution during RE were modeled for six 90Y-loaded microsphere infusions in three patients with hepatocellular carcinoma using a commercially available computational fluid dynamics (CFD) software package. The model was built based on in vivo data acquired during the pretreatment stage. The results of the simulations were compared with the in vivo distribution assessed by 90Y PET/CT. Specifically, the microsphere distribution predicted was compared with the actual 90Y activity per liver segment with a commercially available 3D-voxel dosimetry software (PLANET Dose, DOSIsoft). The average difference between the CFD-based and the PET/CT-based activity distribution was 2.36 percentage points for Patient 1, 3.51 percentage points for Patient 2 and 2.02 percentage points for Patient 3. These results suggest that CFD simulations may help to predict 90Y-microsphere distribution after RE and could be used to optimize the RE procedure on a patient-specific basis.Raúl AntónJavier AntoñanaJorge AramburuAna EzpondaElena PrietoAsier AndoneguiJulio OrtegaIsabel VivasLidia SanchoBruno SangroJosé Ignacio BilbaoMacarena Rodríguez-FraileNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-12 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Raúl Antón Javier Antoñana Jorge Aramburu Ana Ezponda Elena Prieto Asier Andonegui Julio Ortega Isabel Vivas Lidia Sancho Bruno Sangro José Ignacio Bilbao Macarena Rodríguez-Fraile A proof-of-concept study of the in-vivo validation of a computational fluid dynamics model of personalized radioembolization |
description |
Abstract Radioembolization (RE) with yttrium-90 (90Y) microspheres, a transcatheter intraarterial therapy for patients with liver cancer, can be modeled computationally. The purpose of this work was to correlate the results obtained with this methodology using in vivo data, so that this computational tool could be used for the optimization of the RE procedure. The hepatic artery three-dimensional (3D) hemodynamics and microsphere distribution during RE were modeled for six 90Y-loaded microsphere infusions in three patients with hepatocellular carcinoma using a commercially available computational fluid dynamics (CFD) software package. The model was built based on in vivo data acquired during the pretreatment stage. The results of the simulations were compared with the in vivo distribution assessed by 90Y PET/CT. Specifically, the microsphere distribution predicted was compared with the actual 90Y activity per liver segment with a commercially available 3D-voxel dosimetry software (PLANET Dose, DOSIsoft). The average difference between the CFD-based and the PET/CT-based activity distribution was 2.36 percentage points for Patient 1, 3.51 percentage points for Patient 2 and 2.02 percentage points for Patient 3. These results suggest that CFD simulations may help to predict 90Y-microsphere distribution after RE and could be used to optimize the RE procedure on a patient-specific basis. |
format |
article |
author |
Raúl Antón Javier Antoñana Jorge Aramburu Ana Ezponda Elena Prieto Asier Andonegui Julio Ortega Isabel Vivas Lidia Sancho Bruno Sangro José Ignacio Bilbao Macarena Rodríguez-Fraile |
author_facet |
Raúl Antón Javier Antoñana Jorge Aramburu Ana Ezponda Elena Prieto Asier Andonegui Julio Ortega Isabel Vivas Lidia Sancho Bruno Sangro José Ignacio Bilbao Macarena Rodríguez-Fraile |
author_sort |
Raúl Antón |
title |
A proof-of-concept study of the in-vivo validation of a computational fluid dynamics model of personalized radioembolization |
title_short |
A proof-of-concept study of the in-vivo validation of a computational fluid dynamics model of personalized radioembolization |
title_full |
A proof-of-concept study of the in-vivo validation of a computational fluid dynamics model of personalized radioembolization |
title_fullStr |
A proof-of-concept study of the in-vivo validation of a computational fluid dynamics model of personalized radioembolization |
title_full_unstemmed |
A proof-of-concept study of the in-vivo validation of a computational fluid dynamics model of personalized radioembolization |
title_sort |
proof-of-concept study of the in-vivo validation of a computational fluid dynamics model of personalized radioembolization |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/42469bf5b02449e0965b8a0d6c87bc54 |
work_keys_str_mv |
AT raulanton aproofofconceptstudyoftheinvivovalidationofacomputationalfluiddynamicsmodelofpersonalizedradioembolization AT javierantonana aproofofconceptstudyoftheinvivovalidationofacomputationalfluiddynamicsmodelofpersonalizedradioembolization AT jorgearamburu aproofofconceptstudyoftheinvivovalidationofacomputationalfluiddynamicsmodelofpersonalizedradioembolization AT anaezponda aproofofconceptstudyoftheinvivovalidationofacomputationalfluiddynamicsmodelofpersonalizedradioembolization AT elenaprieto aproofofconceptstudyoftheinvivovalidationofacomputationalfluiddynamicsmodelofpersonalizedradioembolization AT asierandonegui aproofofconceptstudyoftheinvivovalidationofacomputationalfluiddynamicsmodelofpersonalizedradioembolization AT julioortega aproofofconceptstudyoftheinvivovalidationofacomputationalfluiddynamicsmodelofpersonalizedradioembolization AT isabelvivas aproofofconceptstudyoftheinvivovalidationofacomputationalfluiddynamicsmodelofpersonalizedradioembolization AT lidiasancho aproofofconceptstudyoftheinvivovalidationofacomputationalfluiddynamicsmodelofpersonalizedradioembolization AT brunosangro aproofofconceptstudyoftheinvivovalidationofacomputationalfluiddynamicsmodelofpersonalizedradioembolization AT joseignaciobilbao aproofofconceptstudyoftheinvivovalidationofacomputationalfluiddynamicsmodelofpersonalizedradioembolization AT macarenarodriguezfraile aproofofconceptstudyoftheinvivovalidationofacomputationalfluiddynamicsmodelofpersonalizedradioembolization AT raulanton proofofconceptstudyoftheinvivovalidationofacomputationalfluiddynamicsmodelofpersonalizedradioembolization AT javierantonana proofofconceptstudyoftheinvivovalidationofacomputationalfluiddynamicsmodelofpersonalizedradioembolization AT jorgearamburu proofofconceptstudyoftheinvivovalidationofacomputationalfluiddynamicsmodelofpersonalizedradioembolization AT anaezponda proofofconceptstudyoftheinvivovalidationofacomputationalfluiddynamicsmodelofpersonalizedradioembolization AT elenaprieto proofofconceptstudyoftheinvivovalidationofacomputationalfluiddynamicsmodelofpersonalizedradioembolization AT asierandonegui proofofconceptstudyoftheinvivovalidationofacomputationalfluiddynamicsmodelofpersonalizedradioembolization AT julioortega proofofconceptstudyoftheinvivovalidationofacomputationalfluiddynamicsmodelofpersonalizedradioembolization AT isabelvivas proofofconceptstudyoftheinvivovalidationofacomputationalfluiddynamicsmodelofpersonalizedradioembolization AT lidiasancho proofofconceptstudyoftheinvivovalidationofacomputationalfluiddynamicsmodelofpersonalizedradioembolization AT brunosangro proofofconceptstudyoftheinvivovalidationofacomputationalfluiddynamicsmodelofpersonalizedradioembolization AT joseignaciobilbao proofofconceptstudyoftheinvivovalidationofacomputationalfluiddynamicsmodelofpersonalizedradioembolization AT macarenarodriguezfraile proofofconceptstudyoftheinvivovalidationofacomputationalfluiddynamicsmodelofpersonalizedradioembolization |
_version_ |
1718396464465444864 |