Determination of the Global Pattern of Gene Expression in Yeast Cells by Intracellular Levels of Guanine Nucleotides

ABSTRACT Correlations between gene transcription and the abundance of high-energy purine nucleotides in Saccharomyces cerevisiae have often been noted. However, there has been no systematic investigation of this phenomenon in the absence of confounding factors such as nutrient status and growth rate...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Andy Hesketh, Marta Vergnano, Stephen G. Oliver
Formato: article
Lenguaje:EN
Publicado: American Society for Microbiology 2019
Materias:
ATP
GTP
Acceso en línea:https://doaj.org/article/4251ae1fe01b4de7838458d6ecbdcaf5
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:4251ae1fe01b4de7838458d6ecbdcaf5
record_format dspace
spelling oai:doaj.org-article:4251ae1fe01b4de7838458d6ecbdcaf52021-11-15T15:55:13ZDetermination of the Global Pattern of Gene Expression in Yeast Cells by Intracellular Levels of Guanine Nucleotides10.1128/mBio.02500-182150-7511https://doaj.org/article/4251ae1fe01b4de7838458d6ecbdcaf52019-02-01T00:00:00Zhttps://journals.asm.org/doi/10.1128/mBio.02500-18https://doaj.org/toc/2150-7511ABSTRACT Correlations between gene transcription and the abundance of high-energy purine nucleotides in Saccharomyces cerevisiae have often been noted. However, there has been no systematic investigation of this phenomenon in the absence of confounding factors such as nutrient status and growth rate, and there is little hard evidence for a causal relationship. Whether transcription is fundamentally responsive to prevailing cellular energetic conditions via sensing of intracellular purine nucleotides, independently of specific nutrition, remains an important question. The controlled nutritional environment of chemostat culture revealed a strong correlation between ATP and GTP abundance and the transcription of genes required for growth. Short pathways for the inducible and futile consumption of ATP or GTP were engineered into S. cerevisiae, permitting analysis of the transcriptional effect of an increased demand for these nucleotides. During steady-state growth using the fermentable carbon source glucose, the futile consumption of ATP led to a decrease in intracellular ATP concentration but an increase in GTP and the guanylate energy charge (GEC). Expression of transcripts encoding proteins involved in ribosome biogenesis, and those controlled by promoters subject to SWI/SNF-dependent chromatin remodelling, was correlated with these nucleotide pool changes. Similar nucleotide abundance changes were observed using a nonfermentable carbon source, but an effect on the growth-associated transcriptional programme was absent. Induction of the GTP-cycling pathway had only marginal effects on nucleotide abundance and gene transcription. The transcriptional response of respiring cells to glucose was dampened in chemostats induced for ATP cycling, but not GTP cycling, and this was primarily associated with altered adenine nucleotide levels. IMPORTANCE This paper investigates whether, independently of the supply of any specific nutrient, gene transcription responds to the energy status of the cell by monitoring ATP and GTP levels. Short pathways for the inducible and futile consumption of ATP or GTP were engineered into the yeast Saccharomyces cerevisiae, and the effect of an increased demand for these purine nucleotides on gene transcription was analyzed. The resulting changes in transcription were most consistently associated with changes in GTP and GEC levels, although the reprogramming in gene expression during glucose repression is sensitive to adenine nucleotide levels. The results show that GTP levels play a central role in determining how genes act to respond to changes in energy supply and that any comprehensive understanding of the control of eukaryotic gene expression requires the elucidation of how changes in guanine nucleotide abundance are sensed and transduced to alter the global pattern of transcription.Andy HeskethMarta VergnanoStephen G. OliverAmerican Society for MicrobiologyarticleATPGTPSaccharomyces cerevisiaemetabolismpurine metabolismMicrobiologyQR1-502ENmBio, Vol 10, Iss 1 (2019)
institution DOAJ
collection DOAJ
language EN
topic ATP
GTP
Saccharomyces cerevisiae
metabolism
purine metabolism
Microbiology
QR1-502
spellingShingle ATP
GTP
Saccharomyces cerevisiae
metabolism
purine metabolism
Microbiology
QR1-502
Andy Hesketh
Marta Vergnano
Stephen G. Oliver
Determination of the Global Pattern of Gene Expression in Yeast Cells by Intracellular Levels of Guanine Nucleotides
description ABSTRACT Correlations between gene transcription and the abundance of high-energy purine nucleotides in Saccharomyces cerevisiae have often been noted. However, there has been no systematic investigation of this phenomenon in the absence of confounding factors such as nutrient status and growth rate, and there is little hard evidence for a causal relationship. Whether transcription is fundamentally responsive to prevailing cellular energetic conditions via sensing of intracellular purine nucleotides, independently of specific nutrition, remains an important question. The controlled nutritional environment of chemostat culture revealed a strong correlation between ATP and GTP abundance and the transcription of genes required for growth. Short pathways for the inducible and futile consumption of ATP or GTP were engineered into S. cerevisiae, permitting analysis of the transcriptional effect of an increased demand for these nucleotides. During steady-state growth using the fermentable carbon source glucose, the futile consumption of ATP led to a decrease in intracellular ATP concentration but an increase in GTP and the guanylate energy charge (GEC). Expression of transcripts encoding proteins involved in ribosome biogenesis, and those controlled by promoters subject to SWI/SNF-dependent chromatin remodelling, was correlated with these nucleotide pool changes. Similar nucleotide abundance changes were observed using a nonfermentable carbon source, but an effect on the growth-associated transcriptional programme was absent. Induction of the GTP-cycling pathway had only marginal effects on nucleotide abundance and gene transcription. The transcriptional response of respiring cells to glucose was dampened in chemostats induced for ATP cycling, but not GTP cycling, and this was primarily associated with altered adenine nucleotide levels. IMPORTANCE This paper investigates whether, independently of the supply of any specific nutrient, gene transcription responds to the energy status of the cell by monitoring ATP and GTP levels. Short pathways for the inducible and futile consumption of ATP or GTP were engineered into the yeast Saccharomyces cerevisiae, and the effect of an increased demand for these purine nucleotides on gene transcription was analyzed. The resulting changes in transcription were most consistently associated with changes in GTP and GEC levels, although the reprogramming in gene expression during glucose repression is sensitive to adenine nucleotide levels. The results show that GTP levels play a central role in determining how genes act to respond to changes in energy supply and that any comprehensive understanding of the control of eukaryotic gene expression requires the elucidation of how changes in guanine nucleotide abundance are sensed and transduced to alter the global pattern of transcription.
format article
author Andy Hesketh
Marta Vergnano
Stephen G. Oliver
author_facet Andy Hesketh
Marta Vergnano
Stephen G. Oliver
author_sort Andy Hesketh
title Determination of the Global Pattern of Gene Expression in Yeast Cells by Intracellular Levels of Guanine Nucleotides
title_short Determination of the Global Pattern of Gene Expression in Yeast Cells by Intracellular Levels of Guanine Nucleotides
title_full Determination of the Global Pattern of Gene Expression in Yeast Cells by Intracellular Levels of Guanine Nucleotides
title_fullStr Determination of the Global Pattern of Gene Expression in Yeast Cells by Intracellular Levels of Guanine Nucleotides
title_full_unstemmed Determination of the Global Pattern of Gene Expression in Yeast Cells by Intracellular Levels of Guanine Nucleotides
title_sort determination of the global pattern of gene expression in yeast cells by intracellular levels of guanine nucleotides
publisher American Society for Microbiology
publishDate 2019
url https://doaj.org/article/4251ae1fe01b4de7838458d6ecbdcaf5
work_keys_str_mv AT andyhesketh determinationoftheglobalpatternofgeneexpressioninyeastcellsbyintracellularlevelsofguaninenucleotides
AT martavergnano determinationoftheglobalpatternofgeneexpressioninyeastcellsbyintracellularlevelsofguaninenucleotides
AT stephengoliver determinationoftheglobalpatternofgeneexpressioninyeastcellsbyintracellularlevelsofguaninenucleotides
_version_ 1718427210205888512