Quasi-static and high strain rate response of Kevlar reinforced thermoplastics
The present study deals with the quasi-static and high strain rate characterization of Kevlar-129 based thermoplastic composites. Two different thermoplastic matrices, namely, Polypropylene (PP) and Polyetherimide (PEI) were used to manufacture composite laminates. Quasi-static compression tests wer...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/4263441a5ca74c25aa45725085892987 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:4263441a5ca74c25aa45725085892987 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:4263441a5ca74c25aa457250858929872021-11-24T04:25:11ZQuasi-static and high strain rate response of Kevlar reinforced thermoplastics0142-941810.1016/j.polymertesting.2020.106964https://doaj.org/article/4263441a5ca74c25aa457250858929872021-01-01T00:00:00Zhttp://www.sciencedirect.com/science/article/pii/S0142941820321930https://doaj.org/toc/0142-9418The present study deals with the quasi-static and high strain rate characterization of Kevlar-129 based thermoplastic composites. Two different thermoplastic matrices, namely, Polypropylene (PP) and Polyetherimide (PEI) were used to manufacture composite laminates. Quasi-static compression tests were performed at strain rates of 0.041 s−1 and 0.045 s−1. High strain rate tests were performed using a split Hopkinson pressure bar apparatus within the strain rates ranging from 2548 s−1 to 4379 s−1. Stress-strain relations reveals the rate-sensitive behaviour of composites. Kevlar/PP (K-PP) showed higher peak stress under quasi-static loading as compared to the high strain rate test. Comparable peak stresses were revealed under quasi-static and high strain rate loading for Kevlar/PEI (K-PEI) composite. Also, high strain rate compression properties such as peak stress, peak strain and toughness of K-PP were 25%, 27% and 6% higher than that of the K-PEI composite. The failure mechanisms of both the composites were characterized through macroscopic and scanning electron microscopy. K-PP failed majorly due to matrix crush and fibre failure while K-PEI failed due to shear cracking. Damage study reveals that a single fibre based composite system can be tailored to act as an energy-absorbing or dissipating material system by varying the thermoplastic matrix materials.Hemant ChouhanNeelanchali Asija BhallaAswani Kumar BandaruShishay Amare GebremeskelNaresh BhatnagarElsevierarticleKevlarThermoplastic matricesQuasi-staticHigh strain rateFailure mechanismsPolymers and polymer manufactureTP1080-1185ENPolymer Testing, Vol 93, Iss , Pp 106964- (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Kevlar Thermoplastic matrices Quasi-static High strain rate Failure mechanisms Polymers and polymer manufacture TP1080-1185 |
spellingShingle |
Kevlar Thermoplastic matrices Quasi-static High strain rate Failure mechanisms Polymers and polymer manufacture TP1080-1185 Hemant Chouhan Neelanchali Asija Bhalla Aswani Kumar Bandaru Shishay Amare Gebremeskel Naresh Bhatnagar Quasi-static and high strain rate response of Kevlar reinforced thermoplastics |
description |
The present study deals with the quasi-static and high strain rate characterization of Kevlar-129 based thermoplastic composites. Two different thermoplastic matrices, namely, Polypropylene (PP) and Polyetherimide (PEI) were used to manufacture composite laminates. Quasi-static compression tests were performed at strain rates of 0.041 s−1 and 0.045 s−1. High strain rate tests were performed using a split Hopkinson pressure bar apparatus within the strain rates ranging from 2548 s−1 to 4379 s−1. Stress-strain relations reveals the rate-sensitive behaviour of composites. Kevlar/PP (K-PP) showed higher peak stress under quasi-static loading as compared to the high strain rate test. Comparable peak stresses were revealed under quasi-static and high strain rate loading for Kevlar/PEI (K-PEI) composite. Also, high strain rate compression properties such as peak stress, peak strain and toughness of K-PP were 25%, 27% and 6% higher than that of the K-PEI composite. The failure mechanisms of both the composites were characterized through macroscopic and scanning electron microscopy. K-PP failed majorly due to matrix crush and fibre failure while K-PEI failed due to shear cracking. Damage study reveals that a single fibre based composite system can be tailored to act as an energy-absorbing or dissipating material system by varying the thermoplastic matrix materials. |
format |
article |
author |
Hemant Chouhan Neelanchali Asija Bhalla Aswani Kumar Bandaru Shishay Amare Gebremeskel Naresh Bhatnagar |
author_facet |
Hemant Chouhan Neelanchali Asija Bhalla Aswani Kumar Bandaru Shishay Amare Gebremeskel Naresh Bhatnagar |
author_sort |
Hemant Chouhan |
title |
Quasi-static and high strain rate response of Kevlar reinforced thermoplastics |
title_short |
Quasi-static and high strain rate response of Kevlar reinforced thermoplastics |
title_full |
Quasi-static and high strain rate response of Kevlar reinforced thermoplastics |
title_fullStr |
Quasi-static and high strain rate response of Kevlar reinforced thermoplastics |
title_full_unstemmed |
Quasi-static and high strain rate response of Kevlar reinforced thermoplastics |
title_sort |
quasi-static and high strain rate response of kevlar reinforced thermoplastics |
publisher |
Elsevier |
publishDate |
2021 |
url |
https://doaj.org/article/4263441a5ca74c25aa45725085892987 |
work_keys_str_mv |
AT hemantchouhan quasistaticandhighstrainrateresponseofkevlarreinforcedthermoplastics AT neelanchaliasijabhalla quasistaticandhighstrainrateresponseofkevlarreinforcedthermoplastics AT aswanikumarbandaru quasistaticandhighstrainrateresponseofkevlarreinforcedthermoplastics AT shishayamaregebremeskel quasistaticandhighstrainrateresponseofkevlarreinforcedthermoplastics AT nareshbhatnagar quasistaticandhighstrainrateresponseofkevlarreinforcedthermoplastics |
_version_ |
1718415971741335552 |