Functionalization Of T Lymphocytes With Citrate-Coated Superparamagnetic Iron Oxide Nanoparticles For Magnetically Controlled Immune Therapy

Marina Mühlberger,1,2 Christina Janko,1 Harald Unterweger,1 Ralf P Friedrich,1 Bernhard Friedrich,1 Julia Band,1 Nadine Cebulla,1 Christoph Alexiou,1 Diana Dudziak,3 Geoffrey Lee,2 Rainer Tietze1 1Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Mühlberger M, Janko C, Unterweger H, Friedrich RP, Friedrich B, Band J, Cebulla N, Alexiou C, Dudziak D, Lee G, Tietze R
Formato: article
Lenguaje:EN
Publicado: Dove Medical Press 2019
Materias:
Acceso en línea:https://doaj.org/article/428db3a9be0a4be890463a6e0cfee0af
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:428db3a9be0a4be890463a6e0cfee0af
record_format dspace
spelling oai:doaj.org-article:428db3a9be0a4be890463a6e0cfee0af2021-12-02T11:38:20ZFunctionalization Of T Lymphocytes With Citrate-Coated Superparamagnetic Iron Oxide Nanoparticles For Magnetically Controlled Immune Therapy1178-2013https://doaj.org/article/428db3a9be0a4be890463a6e0cfee0af2019-10-01T00:00:00Zhttps://www.dovepress.com/functionalization-of-t-lymphocytes-with-citrate-coated-superparamagnet-peer-reviewed-article-IJNhttps://doaj.org/toc/1178-2013Marina Mühlberger,1,2 Christina Janko,1 Harald Unterweger,1 Ralf P Friedrich,1 Bernhard Friedrich,1 Julia Band,1 Nadine Cebulla,1 Christoph Alexiou,1 Diana Dudziak,3 Geoffrey Lee,2 Rainer Tietze1 1Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, Erlangen, Germany; 2Department of Chemistry and Pharmacy, Division of Pharmaceutics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; 3Department of Dermatology, Laboratory of Dendritic Cell Biology, Universitätsklinikum Erlangen, Erlangen, GermanyCorrespondence: Rainer TietzeSection of Experimental Oncology and Nanomedicine, ENT Department, Universitätsklinikum Erlangen, Glückstr. 10a, Erlangen 91054, GermanyTel +49 9131 8533142Fax +49 9131 8534828Email rainer.tietze@uk-erlangen.dePurpose: Immune activation with T cell tumor infiltration is beneficial for the prognosis of patients suffering from solid cancer. Depending on their immune status, solid tumors can be immunologically classified into three groups: “hot” tumors are infiltrated with T lymphocytes, “cold” tumors are not infiltrated and “immune excluded” tumors are only infiltrated in the peripheral tumor tissue. Checkpoint inhibitors provide new therapeutic options for “hot” tumors by triggering the immune response of T cells. In order to enable this for cold tumors as well, T cells must be enriched in the tumor. Therefore, we use the principle of magnetic targeting to guide T cells loaded with citrate-coated superparamagnetic iron oxide nanoparticles (SPIONCitrate) to the tumor by an externally applied magnetic field.Methods: SPIONCitrate were produced by alkaline coprecipitation of iron(II) and iron(III) chloride and in situ coating with sodium citrate. The concentration-dependent cytocompatibility of the particles was determined by flow cytometry and blood stability assays. Atomic emission spectroscopy was used for the quantification of the particle uptake into T lymphocytes. The attractability of the loaded cells was observed by live-cell imaging in the presence of an externally applied magnetic field.Results: SPIONCitrate displayed good cytocompatibility to T cells and did not show any sign of aggregation in blood. Finally, SPIONCitrate-loaded T cells were strongly attracted by a small external magnet.Conclusion: T cells can be “magnetized” by incorporation of SPIONCitrate for magnetic targeting. The production of the particle-cell hybrid system is straightforward, as the loading process only requires basic laboratory devices and the loading efficiency is sufficient for cells being magnetically controllable. For these reasons, SPIONCitrate are potential suitable candidates for magnetic T cell targeting.Keywords: magnetic targeting, biocompatibility, immunoaffinity chromatography, cold tumor, T cellMühlberger MJanko CUnterweger HFriedrich RPFriedrich BBand JCebulla NAlexiou CDudziak DLee GTietze RDove Medical Pressarticlemagnetic targetingbiocompatibilityimmunoaffinitychromatographycold tumorT cellMedicine (General)R5-920ENInternational Journal of Nanomedicine, Vol Volume 14, Pp 8421-8432 (2019)
institution DOAJ
collection DOAJ
language EN
topic magnetic targeting
biocompatibility
immunoaffinitychromatography
cold tumor
T cell
Medicine (General)
R5-920
spellingShingle magnetic targeting
biocompatibility
immunoaffinitychromatography
cold tumor
T cell
Medicine (General)
R5-920
Mühlberger M
Janko C
Unterweger H
Friedrich RP
Friedrich B
Band J
Cebulla N
Alexiou C
Dudziak D
Lee G
Tietze R
Functionalization Of T Lymphocytes With Citrate-Coated Superparamagnetic Iron Oxide Nanoparticles For Magnetically Controlled Immune Therapy
description Marina Mühlberger,1,2 Christina Janko,1 Harald Unterweger,1 Ralf P Friedrich,1 Bernhard Friedrich,1 Julia Band,1 Nadine Cebulla,1 Christoph Alexiou,1 Diana Dudziak,3 Geoffrey Lee,2 Rainer Tietze1 1Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, Erlangen, Germany; 2Department of Chemistry and Pharmacy, Division of Pharmaceutics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; 3Department of Dermatology, Laboratory of Dendritic Cell Biology, Universitätsklinikum Erlangen, Erlangen, GermanyCorrespondence: Rainer TietzeSection of Experimental Oncology and Nanomedicine, ENT Department, Universitätsklinikum Erlangen, Glückstr. 10a, Erlangen 91054, GermanyTel +49 9131 8533142Fax +49 9131 8534828Email rainer.tietze@uk-erlangen.dePurpose: Immune activation with T cell tumor infiltration is beneficial for the prognosis of patients suffering from solid cancer. Depending on their immune status, solid tumors can be immunologically classified into three groups: “hot” tumors are infiltrated with T lymphocytes, “cold” tumors are not infiltrated and “immune excluded” tumors are only infiltrated in the peripheral tumor tissue. Checkpoint inhibitors provide new therapeutic options for “hot” tumors by triggering the immune response of T cells. In order to enable this for cold tumors as well, T cells must be enriched in the tumor. Therefore, we use the principle of magnetic targeting to guide T cells loaded with citrate-coated superparamagnetic iron oxide nanoparticles (SPIONCitrate) to the tumor by an externally applied magnetic field.Methods: SPIONCitrate were produced by alkaline coprecipitation of iron(II) and iron(III) chloride and in situ coating with sodium citrate. The concentration-dependent cytocompatibility of the particles was determined by flow cytometry and blood stability assays. Atomic emission spectroscopy was used for the quantification of the particle uptake into T lymphocytes. The attractability of the loaded cells was observed by live-cell imaging in the presence of an externally applied magnetic field.Results: SPIONCitrate displayed good cytocompatibility to T cells and did not show any sign of aggregation in blood. Finally, SPIONCitrate-loaded T cells were strongly attracted by a small external magnet.Conclusion: T cells can be “magnetized” by incorporation of SPIONCitrate for magnetic targeting. The production of the particle-cell hybrid system is straightforward, as the loading process only requires basic laboratory devices and the loading efficiency is sufficient for cells being magnetically controllable. For these reasons, SPIONCitrate are potential suitable candidates for magnetic T cell targeting.Keywords: magnetic targeting, biocompatibility, immunoaffinity chromatography, cold tumor, T cell
format article
author Mühlberger M
Janko C
Unterweger H
Friedrich RP
Friedrich B
Band J
Cebulla N
Alexiou C
Dudziak D
Lee G
Tietze R
author_facet Mühlberger M
Janko C
Unterweger H
Friedrich RP
Friedrich B
Band J
Cebulla N
Alexiou C
Dudziak D
Lee G
Tietze R
author_sort Mühlberger M
title Functionalization Of T Lymphocytes With Citrate-Coated Superparamagnetic Iron Oxide Nanoparticles For Magnetically Controlled Immune Therapy
title_short Functionalization Of T Lymphocytes With Citrate-Coated Superparamagnetic Iron Oxide Nanoparticles For Magnetically Controlled Immune Therapy
title_full Functionalization Of T Lymphocytes With Citrate-Coated Superparamagnetic Iron Oxide Nanoparticles For Magnetically Controlled Immune Therapy
title_fullStr Functionalization Of T Lymphocytes With Citrate-Coated Superparamagnetic Iron Oxide Nanoparticles For Magnetically Controlled Immune Therapy
title_full_unstemmed Functionalization Of T Lymphocytes With Citrate-Coated Superparamagnetic Iron Oxide Nanoparticles For Magnetically Controlled Immune Therapy
title_sort functionalization of t lymphocytes with citrate-coated superparamagnetic iron oxide nanoparticles for magnetically controlled immune therapy
publisher Dove Medical Press
publishDate 2019
url https://doaj.org/article/428db3a9be0a4be890463a6e0cfee0af
work_keys_str_mv AT muhlbergerm functionalizationoftlymphocyteswithcitratecoatedsuperparamagneticironoxidenanoparticlesformagneticallycontrolledimmunetherapy
AT jankoc functionalizationoftlymphocyteswithcitratecoatedsuperparamagneticironoxidenanoparticlesformagneticallycontrolledimmunetherapy
AT unterwegerh functionalizationoftlymphocyteswithcitratecoatedsuperparamagneticironoxidenanoparticlesformagneticallycontrolledimmunetherapy
AT friedrichrp functionalizationoftlymphocyteswithcitratecoatedsuperparamagneticironoxidenanoparticlesformagneticallycontrolledimmunetherapy
AT friedrichb functionalizationoftlymphocyteswithcitratecoatedsuperparamagneticironoxidenanoparticlesformagneticallycontrolledimmunetherapy
AT bandj functionalizationoftlymphocyteswithcitratecoatedsuperparamagneticironoxidenanoparticlesformagneticallycontrolledimmunetherapy
AT cebullan functionalizationoftlymphocyteswithcitratecoatedsuperparamagneticironoxidenanoparticlesformagneticallycontrolledimmunetherapy
AT alexiouc functionalizationoftlymphocyteswithcitratecoatedsuperparamagneticironoxidenanoparticlesformagneticallycontrolledimmunetherapy
AT dudziakd functionalizationoftlymphocyteswithcitratecoatedsuperparamagneticironoxidenanoparticlesformagneticallycontrolledimmunetherapy
AT leeg functionalizationoftlymphocyteswithcitratecoatedsuperparamagneticironoxidenanoparticlesformagneticallycontrolledimmunetherapy
AT tietzer functionalizationoftlymphocyteswithcitratecoatedsuperparamagneticironoxidenanoparticlesformagneticallycontrolledimmunetherapy
_version_ 1718395754056253440