A Systematic Review on Model Watermarking for Neural Networks
Machine learning (ML) models are applied in an increasing variety of domains. The availability of large amounts of data and computational resources encourages the development of ever more complex and valuable models. These models are considered the intellectual property of the legitimate parties who...
Guardado en:
Autor principal: | |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/429416b4de194c82b7b315fde8dd04b0 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:429416b4de194c82b7b315fde8dd04b0 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:429416b4de194c82b7b315fde8dd04b02021-12-01T13:40:01ZA Systematic Review on Model Watermarking for Neural Networks2624-909X10.3389/fdata.2021.729663https://doaj.org/article/429416b4de194c82b7b315fde8dd04b02021-11-01T00:00:00Zhttps://www.frontiersin.org/articles/10.3389/fdata.2021.729663/fullhttps://doaj.org/toc/2624-909XMachine learning (ML) models are applied in an increasing variety of domains. The availability of large amounts of data and computational resources encourages the development of ever more complex and valuable models. These models are considered the intellectual property of the legitimate parties who have trained them, which makes their protection against stealing, illegitimate redistribution, and unauthorized application an urgent need. Digital watermarking presents a strong mechanism for marking model ownership and, thereby, offers protection against those threats. This work presents a taxonomy identifying and analyzing different classes of watermarking schemes for ML models. It introduces a unified threat model to allow structured reasoning on and comparison of the effectiveness of watermarking methods in different scenarios. Furthermore, it systematizes desired security requirements and attacks against ML model watermarking. Based on that framework, representative literature from the field is surveyed to illustrate the taxonomy. Finally, shortcomings and general limitations of existing approaches are discussed, and an outlook on future research directions is given.Franziska BoenischFrontiers Media S.A.articleneural networksintellectual property protectionwatermarkingmachine learningmodel stealingInformation technologyT58.5-58.64ENFrontiers in Big Data, Vol 4 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
neural networks intellectual property protection watermarking machine learning model stealing Information technology T58.5-58.64 |
spellingShingle |
neural networks intellectual property protection watermarking machine learning model stealing Information technology T58.5-58.64 Franziska Boenisch A Systematic Review on Model Watermarking for Neural Networks |
description |
Machine learning (ML) models are applied in an increasing variety of domains. The availability of large amounts of data and computational resources encourages the development of ever more complex and valuable models. These models are considered the intellectual property of the legitimate parties who have trained them, which makes their protection against stealing, illegitimate redistribution, and unauthorized application an urgent need. Digital watermarking presents a strong mechanism for marking model ownership and, thereby, offers protection against those threats. This work presents a taxonomy identifying and analyzing different classes of watermarking schemes for ML models. It introduces a unified threat model to allow structured reasoning on and comparison of the effectiveness of watermarking methods in different scenarios. Furthermore, it systematizes desired security requirements and attacks against ML model watermarking. Based on that framework, representative literature from the field is surveyed to illustrate the taxonomy. Finally, shortcomings and general limitations of existing approaches are discussed, and an outlook on future research directions is given. |
format |
article |
author |
Franziska Boenisch |
author_facet |
Franziska Boenisch |
author_sort |
Franziska Boenisch |
title |
A Systematic Review on Model Watermarking for Neural Networks |
title_short |
A Systematic Review on Model Watermarking for Neural Networks |
title_full |
A Systematic Review on Model Watermarking for Neural Networks |
title_fullStr |
A Systematic Review on Model Watermarking for Neural Networks |
title_full_unstemmed |
A Systematic Review on Model Watermarking for Neural Networks |
title_sort |
systematic review on model watermarking for neural networks |
publisher |
Frontiers Media S.A. |
publishDate |
2021 |
url |
https://doaj.org/article/429416b4de194c82b7b315fde8dd04b0 |
work_keys_str_mv |
AT franziskaboenisch asystematicreviewonmodelwatermarkingforneuralnetworks AT franziskaboenisch systematicreviewonmodelwatermarkingforneuralnetworks |
_version_ |
1718405113107709952 |