Bacterial Secondary Metabolite Biosynthetic Potential in Soil Varies with Phylum, Depth, and Vegetation Type
ABSTRACT Bacteria isolated from soils are major sources of specialized metabolites, including antibiotics and other compounds with clinical value that likely shape interactions among microbial community members and impact biogeochemical cycles. Yet, isolated lineages represent a small fraction of al...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
American Society for Microbiology
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/429adbd5fc8f45439457b2671d59969d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:429adbd5fc8f45439457b2671d59969d |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:429adbd5fc8f45439457b2671d59969d2021-11-15T15:56:47ZBacterial Secondary Metabolite Biosynthetic Potential in Soil Varies with Phylum, Depth, and Vegetation Type10.1128/mBio.00416-202150-7511https://doaj.org/article/429adbd5fc8f45439457b2671d59969d2020-06-01T00:00:00Zhttps://journals.asm.org/doi/10.1128/mBio.00416-20https://doaj.org/toc/2150-7511ABSTRACT Bacteria isolated from soils are major sources of specialized metabolites, including antibiotics and other compounds with clinical value that likely shape interactions among microbial community members and impact biogeochemical cycles. Yet, isolated lineages represent a small fraction of all soil bacterial diversity. It remains unclear how the production of specialized metabolites varies across the phylogenetic diversity of bacterial species in soils and whether the genetic potential for production of these metabolites differs with soil depth and vegetation type within a geographic region. We sampled soils and saprolite from three sites in a northern California Critical Zone Observatory with various vegetation and bedrock characteristics and reconstructed 1,334 metagenome-assembled genomes containing diverse biosynthetic gene clusters (BGCs) for secondary metabolite production. We obtained genomes for prolific producers of secondary metabolites, including novel groups within the Actinobacteria, Chloroflexi, and candidate phylum “Candidatus Dormibacteraeota.” Surprisingly, one genome of a candidate phyla radiation (CPR) bacterium coded for a ribosomally synthesized linear azole/azoline-containing peptide, a capacity we found in other publicly available CPR bacterial genomes. Overall, bacteria with higher biosynthetic potential were enriched in shallow soils and grassland soils, with patterns of abundance of BGC type varying by taxonomy. IMPORTANCE Microbes produce specialized compounds to compete or communicate with one another and their environment. Some of these compounds, such as antibiotics, are also useful in medicine and biotechnology. Historically, most antibiotics have come from soil bacteria which can be isolated and grown in the lab. Though the vast majority of soil bacteria cannot be isolated, we can extract their genetic information and search it for genes which produce these specialized compounds. These understudied soil bacteria offer a wealth of potential for the discovery of new and important microbial products. Here, we identified the ability to produce these specialized compounds in diverse and novel bacteria in a range of soil environments. This information will be useful to other researchers who wish to isolate certain products. Beyond their use to humans, understanding the distribution and function of microbial products is key to understanding microbial communities and their effects on biogeochemical cycles.Allison M. SharrarAlexander Crits-ChristophRaphaël MéheustSpencer DiamondEvan P. StarrJillian F. BanfieldAmerican Society for Microbiologyarticlemetagenomicssecondary metabolismsoil microbiologyMicrobiologyQR1-502ENmBio, Vol 11, Iss 3 (2020) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
metagenomics secondary metabolism soil microbiology Microbiology QR1-502 |
spellingShingle |
metagenomics secondary metabolism soil microbiology Microbiology QR1-502 Allison M. Sharrar Alexander Crits-Christoph Raphaël Méheust Spencer Diamond Evan P. Starr Jillian F. Banfield Bacterial Secondary Metabolite Biosynthetic Potential in Soil Varies with Phylum, Depth, and Vegetation Type |
description |
ABSTRACT Bacteria isolated from soils are major sources of specialized metabolites, including antibiotics and other compounds with clinical value that likely shape interactions among microbial community members and impact biogeochemical cycles. Yet, isolated lineages represent a small fraction of all soil bacterial diversity. It remains unclear how the production of specialized metabolites varies across the phylogenetic diversity of bacterial species in soils and whether the genetic potential for production of these metabolites differs with soil depth and vegetation type within a geographic region. We sampled soils and saprolite from three sites in a northern California Critical Zone Observatory with various vegetation and bedrock characteristics and reconstructed 1,334 metagenome-assembled genomes containing diverse biosynthetic gene clusters (BGCs) for secondary metabolite production. We obtained genomes for prolific producers of secondary metabolites, including novel groups within the Actinobacteria, Chloroflexi, and candidate phylum “Candidatus Dormibacteraeota.” Surprisingly, one genome of a candidate phyla radiation (CPR) bacterium coded for a ribosomally synthesized linear azole/azoline-containing peptide, a capacity we found in other publicly available CPR bacterial genomes. Overall, bacteria with higher biosynthetic potential were enriched in shallow soils and grassland soils, with patterns of abundance of BGC type varying by taxonomy. IMPORTANCE Microbes produce specialized compounds to compete or communicate with one another and their environment. Some of these compounds, such as antibiotics, are also useful in medicine and biotechnology. Historically, most antibiotics have come from soil bacteria which can be isolated and grown in the lab. Though the vast majority of soil bacteria cannot be isolated, we can extract their genetic information and search it for genes which produce these specialized compounds. These understudied soil bacteria offer a wealth of potential for the discovery of new and important microbial products. Here, we identified the ability to produce these specialized compounds in diverse and novel bacteria in a range of soil environments. This information will be useful to other researchers who wish to isolate certain products. Beyond their use to humans, understanding the distribution and function of microbial products is key to understanding microbial communities and their effects on biogeochemical cycles. |
format |
article |
author |
Allison M. Sharrar Alexander Crits-Christoph Raphaël Méheust Spencer Diamond Evan P. Starr Jillian F. Banfield |
author_facet |
Allison M. Sharrar Alexander Crits-Christoph Raphaël Méheust Spencer Diamond Evan P. Starr Jillian F. Banfield |
author_sort |
Allison M. Sharrar |
title |
Bacterial Secondary Metabolite Biosynthetic Potential in Soil Varies with Phylum, Depth, and Vegetation Type |
title_short |
Bacterial Secondary Metabolite Biosynthetic Potential in Soil Varies with Phylum, Depth, and Vegetation Type |
title_full |
Bacterial Secondary Metabolite Biosynthetic Potential in Soil Varies with Phylum, Depth, and Vegetation Type |
title_fullStr |
Bacterial Secondary Metabolite Biosynthetic Potential in Soil Varies with Phylum, Depth, and Vegetation Type |
title_full_unstemmed |
Bacterial Secondary Metabolite Biosynthetic Potential in Soil Varies with Phylum, Depth, and Vegetation Type |
title_sort |
bacterial secondary metabolite biosynthetic potential in soil varies with phylum, depth, and vegetation type |
publisher |
American Society for Microbiology |
publishDate |
2020 |
url |
https://doaj.org/article/429adbd5fc8f45439457b2671d59969d |
work_keys_str_mv |
AT allisonmsharrar bacterialsecondarymetabolitebiosyntheticpotentialinsoilvarieswithphylumdepthandvegetationtype AT alexandercritschristoph bacterialsecondarymetabolitebiosyntheticpotentialinsoilvarieswithphylumdepthandvegetationtype AT raphaelmeheust bacterialsecondarymetabolitebiosyntheticpotentialinsoilvarieswithphylumdepthandvegetationtype AT spencerdiamond bacterialsecondarymetabolitebiosyntheticpotentialinsoilvarieswithphylumdepthandvegetationtype AT evanpstarr bacterialsecondarymetabolitebiosyntheticpotentialinsoilvarieswithphylumdepthandvegetationtype AT jillianfbanfield bacterialsecondarymetabolitebiosyntheticpotentialinsoilvarieswithphylumdepthandvegetationtype |
_version_ |
1718427083954192384 |