Effect of Database Generation on Damage Consequences’ Assessment Based on Random Forests
Recently, the application of machine learning has been explored to assess the main damage consequences without employing flooding sensors. This method can be the base of a new generation of onboard decision support systems to help the master during the progressive flooding of the ship. In particular...
Guardado en:
Autores principales: | Luca Braidotti, Jasna Prpić-Oršić, Marko Valčić |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/429fe110130948778068fdb08f9f01ef |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Sea Surface Temperature: From Observation to Applications
por: Francisco Pastor
Publicado: (2021) -
Evaluation of Boulder Deposits Linked to Late Neogene Hurricane Events
por: Markes E. Johnson, et al.
Publicado: (2021) -
Offshore and Onshore Wave Energy Converters: Engineering and Environmental Features
por: Luca Cavallaro, et al.
Publicado: (2021) -
A User-Oriented Local Coastal Flooding Early Warning System Using Metamodelling Techniques
por: Déborah Idier, et al.
Publicado: (2021) -
A Coordination System between Decision Making and Controlling for Autonomous Collision Avoidance of Large Intelligent Ships
por: Zhengyu Zhou, et al.
Publicado: (2021)