Nanoscale slip length prediction with machine learning tools
Abstract This work incorporates machine learning (ML) techniques, such as multivariate regression, the multi-layer perceptron, and random forest to predict the slip length at the nanoscale. Data points are collected both from our simulation data and data from the literature, and comprise Molecular D...
Guardado en:
Autores principales: | Filippos Sofos, Theodoros E. Karakasidis |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/42a0d2d89ab94a18bd3f2b823ffb3de8 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Real-time prediction of Poisson’s ratio from drilling parameters using machine learning tools
por: Osama Siddig, et al.
Publicado: (2021) -
Predicting malaria epidemics in Burkina Faso with machine learning.
por: David Harvey, et al.
Publicado: (2021) -
Prediction of thermal boundary resistance by the machine learning method
por: Tianzhuo Zhan, et al.
Publicado: (2017) -
Fast Holocene slip and localized strain along the Liquiñe-Ofqui strike-slip fault system, Chile
por: Luis Astudillo-Sotomayor, et al.
Publicado: (2021) -
Combining multi-site magnetic resonance imaging with machine learning predicts survival in pediatric brain tumors
por: James T. Grist, et al.
Publicado: (2021)