Nanoscale slip length prediction with machine learning tools
Abstract This work incorporates machine learning (ML) techniques, such as multivariate regression, the multi-layer perceptron, and random forest to predict the slip length at the nanoscale. Data points are collected both from our simulation data and data from the literature, and comprise Molecular D...
Enregistré dans:
Auteurs principaux: | Filippos Sofos, Theodoros E. Karakasidis |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/42a0d2d89ab94a18bd3f2b823ffb3de8 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Real-time prediction of Poisson’s ratio from drilling parameters using machine learning tools
par: Osama Siddig, et autres
Publié: (2021) -
Predicting malaria epidemics in Burkina Faso with machine learning.
par: David Harvey, et autres
Publié: (2021) -
Prediction of thermal boundary resistance by the machine learning method
par: Tianzhuo Zhan, et autres
Publié: (2017) -
Fast Holocene slip and localized strain along the Liquiñe-Ofqui strike-slip fault system, Chile
par: Luis Astudillo-Sotomayor, et autres
Publié: (2021) -
Combining multi-site magnetic resonance imaging with machine learning predicts survival in pediatric brain tumors
par: James T. Grist, et autres
Publié: (2021)