Correlating work hardening with co-activation of stacking fault strengthening and transformation in a high entropy alloy using in-situ neutron diffraction
Abstract Transformation induced plasticity (TRIP) leads to enhancements in ductility in low stacking fault energy (SFE) alloys, however to achieve an unconventional increase in strength simultaneously, there must be barriers to dislocation motion. While stacking faults (SFs) contribute to strengthen...
Guardado en:
Autores principales: | , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/42a2604f811848f9861b9980a5debd2c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:42a2604f811848f9861b9980a5debd2c |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:42a2604f811848f9861b9980a5debd2c2021-12-02T13:33:59ZCorrelating work hardening with co-activation of stacking fault strengthening and transformation in a high entropy alloy using in-situ neutron diffraction10.1038/s41598-020-79492-82045-2322https://doaj.org/article/42a2604f811848f9861b9980a5debd2c2020-12-01T00:00:00Zhttps://doi.org/10.1038/s41598-020-79492-8https://doaj.org/toc/2045-2322Abstract Transformation induced plasticity (TRIP) leads to enhancements in ductility in low stacking fault energy (SFE) alloys, however to achieve an unconventional increase in strength simultaneously, there must be barriers to dislocation motion. While stacking faults (SFs) contribute to strengthening by impeding dislocation motion, the contribution of SF strengthening to work hardening during deformation is not well understood; as compared to dislocation slip, twinning induced plasticity (TWIP) and TRIP. Thus, we used in-situ neutron diffraction to correlate SF strengthening to work hardening behavior in a low SFE Fe40Mn20Cr15Co20Si5 (at%) high entropy alloy, SFE ~ 6.31 mJ m−2. Cooperative activation of multiple mechanisms was indicated by increases in SF strengthening and γ-f.c.c. → ε-h.c.p. transformation leading to a simultaneous increase in strength and ductility. The present study demonstrates the application of in-situ, neutron or X-ray, diffraction techniques to correlating SF strengthening to work hardening.M. FrankS. S. NeneY. ChenB. GwalaniE. J. KautzA. DevarajK. AnR. S. MishraNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 10, Iss 1, Pp 1-10 (2020) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q M. Frank S. S. Nene Y. Chen B. Gwalani E. J. Kautz A. Devaraj K. An R. S. Mishra Correlating work hardening with co-activation of stacking fault strengthening and transformation in a high entropy alloy using in-situ neutron diffraction |
description |
Abstract Transformation induced plasticity (TRIP) leads to enhancements in ductility in low stacking fault energy (SFE) alloys, however to achieve an unconventional increase in strength simultaneously, there must be barriers to dislocation motion. While stacking faults (SFs) contribute to strengthening by impeding dislocation motion, the contribution of SF strengthening to work hardening during deformation is not well understood; as compared to dislocation slip, twinning induced plasticity (TWIP) and TRIP. Thus, we used in-situ neutron diffraction to correlate SF strengthening to work hardening behavior in a low SFE Fe40Mn20Cr15Co20Si5 (at%) high entropy alloy, SFE ~ 6.31 mJ m−2. Cooperative activation of multiple mechanisms was indicated by increases in SF strengthening and γ-f.c.c. → ε-h.c.p. transformation leading to a simultaneous increase in strength and ductility. The present study demonstrates the application of in-situ, neutron or X-ray, diffraction techniques to correlating SF strengthening to work hardening. |
format |
article |
author |
M. Frank S. S. Nene Y. Chen B. Gwalani E. J. Kautz A. Devaraj K. An R. S. Mishra |
author_facet |
M. Frank S. S. Nene Y. Chen B. Gwalani E. J. Kautz A. Devaraj K. An R. S. Mishra |
author_sort |
M. Frank |
title |
Correlating work hardening with co-activation of stacking fault strengthening and transformation in a high entropy alloy using in-situ neutron diffraction |
title_short |
Correlating work hardening with co-activation of stacking fault strengthening and transformation in a high entropy alloy using in-situ neutron diffraction |
title_full |
Correlating work hardening with co-activation of stacking fault strengthening and transformation in a high entropy alloy using in-situ neutron diffraction |
title_fullStr |
Correlating work hardening with co-activation of stacking fault strengthening and transformation in a high entropy alloy using in-situ neutron diffraction |
title_full_unstemmed |
Correlating work hardening with co-activation of stacking fault strengthening and transformation in a high entropy alloy using in-situ neutron diffraction |
title_sort |
correlating work hardening with co-activation of stacking fault strengthening and transformation in a high entropy alloy using in-situ neutron diffraction |
publisher |
Nature Portfolio |
publishDate |
2020 |
url |
https://doaj.org/article/42a2604f811848f9861b9980a5debd2c |
work_keys_str_mv |
AT mfrank correlatingworkhardeningwithcoactivationofstackingfaultstrengtheningandtransformationinahighentropyalloyusinginsituneutrondiffraction AT ssnene correlatingworkhardeningwithcoactivationofstackingfaultstrengtheningandtransformationinahighentropyalloyusinginsituneutrondiffraction AT ychen correlatingworkhardeningwithcoactivationofstackingfaultstrengtheningandtransformationinahighentropyalloyusinginsituneutrondiffraction AT bgwalani correlatingworkhardeningwithcoactivationofstackingfaultstrengtheningandtransformationinahighentropyalloyusinginsituneutrondiffraction AT ejkautz correlatingworkhardeningwithcoactivationofstackingfaultstrengtheningandtransformationinahighentropyalloyusinginsituneutrondiffraction AT adevaraj correlatingworkhardeningwithcoactivationofstackingfaultstrengtheningandtransformationinahighentropyalloyusinginsituneutrondiffraction AT kan correlatingworkhardeningwithcoactivationofstackingfaultstrengtheningandtransformationinahighentropyalloyusinginsituneutrondiffraction AT rsmishra correlatingworkhardeningwithcoactivationofstackingfaultstrengtheningandtransformationinahighentropyalloyusinginsituneutrondiffraction |
_version_ |
1718392790448078848 |