Global attractors for a class of semilinear degenerate parabolic equations

In this paper, we consider the long-time behavior for a class of semi-linear degenerate parabolic equations with the nonlinearity ff satisfying the polynomial growth of arbitrary p−1p-1 order. We establish some new estimates, i.e., asymptotic higher-order integrability for the difference of the solu...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Zhu Kaixuan, Xie Yongqin
Formato: article
Lenguaje:EN
Publicado: De Gruyter 2021
Materias:
Acceso en línea:https://doaj.org/article/42aa706084df4166a2f9ba49938f5232
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:In this paper, we consider the long-time behavior for a class of semi-linear degenerate parabolic equations with the nonlinearity ff satisfying the polynomial growth of arbitrary p−1p-1 order. We establish some new estimates, i.e., asymptotic higher-order integrability for the difference of the solutions near the initial time. As an application, we obtain the (L2(Ω),Lp(Ω))\left({L}^{2}\left(\Omega ),{L}^{p}\left(\Omega ))-global attractors immediately; moreover, such an attractor can attract every bounded subset of L2(Ω){L}^{2}\left(\Omega ) with the Lp+δ{L}^{p+\delta }-norm for any δ∈[0,+∞)\delta \in \left[0,+\infty ).