Global attractors for a class of semilinear degenerate parabolic equations
In this paper, we consider the long-time behavior for a class of semi-linear degenerate parabolic equations with the nonlinearity ff satisfying the polynomial growth of arbitrary p−1p-1 order. We establish some new estimates, i.e., asymptotic higher-order integrability for the difference of the solu...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/42aa706084df4166a2f9ba49938f5232 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | In this paper, we consider the long-time behavior for a class of semi-linear degenerate parabolic equations with the nonlinearity ff satisfying the polynomial growth of arbitrary p−1p-1 order. We establish some new estimates, i.e., asymptotic higher-order integrability for the difference of the solutions near the initial time. As an application, we obtain the (L2(Ω),Lp(Ω))\left({L}^{2}\left(\Omega ),{L}^{p}\left(\Omega ))-global attractors immediately; moreover, such an attractor can attract every bounded subset of L2(Ω){L}^{2}\left(\Omega ) with the Lp+δ{L}^{p+\delta }-norm for any δ∈[0,+∞)\delta \in \left[0,+\infty ). |
---|