Global attractors for a class of semilinear degenerate parabolic equations
In this paper, we consider the long-time behavior for a class of semi-linear degenerate parabolic equations with the nonlinearity ff satisfying the polynomial growth of arbitrary p−1p-1 order. We establish some new estimates, i.e., asymptotic higher-order integrability for the difference of the solu...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/42aa706084df4166a2f9ba49938f5232 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:42aa706084df4166a2f9ba49938f5232 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:42aa706084df4166a2f9ba49938f52322021-12-05T14:10:52ZGlobal attractors for a class of semilinear degenerate parabolic equations2391-545510.1515/math-2021-0018https://doaj.org/article/42aa706084df4166a2f9ba49938f52322021-05-01T00:00:00Zhttps://doi.org/10.1515/math-2021-0018https://doaj.org/toc/2391-5455In this paper, we consider the long-time behavior for a class of semi-linear degenerate parabolic equations with the nonlinearity ff satisfying the polynomial growth of arbitrary p−1p-1 order. We establish some new estimates, i.e., asymptotic higher-order integrability for the difference of the solutions near the initial time. As an application, we obtain the (L2(Ω),Lp(Ω))\left({L}^{2}\left(\Omega ),{L}^{p}\left(\Omega ))-global attractors immediately; moreover, such an attractor can attract every bounded subset of L2(Ω){L}^{2}\left(\Omega ) with the Lp+δ{L}^{p+\delta }-norm for any δ∈[0,+∞)\delta \in \left[0,+\infty ).Zhu KaixuanXie YongqinDe Gruyterarticledegenerate parabolic equationspolynomial growth of arbitrary orderasymptotic higher-order integrabilityglobal attractors35b4035b4135k65MathematicsQA1-939ENOpen Mathematics, Vol 19, Iss 1, Pp 212-224 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
degenerate parabolic equations polynomial growth of arbitrary order asymptotic higher-order integrability global attractors 35b40 35b41 35k65 Mathematics QA1-939 |
spellingShingle |
degenerate parabolic equations polynomial growth of arbitrary order asymptotic higher-order integrability global attractors 35b40 35b41 35k65 Mathematics QA1-939 Zhu Kaixuan Xie Yongqin Global attractors for a class of semilinear degenerate parabolic equations |
description |
In this paper, we consider the long-time behavior for a class of semi-linear degenerate parabolic equations with the nonlinearity ff satisfying the polynomial growth of arbitrary p−1p-1 order. We establish some new estimates, i.e., asymptotic higher-order integrability for the difference of the solutions near the initial time. As an application, we obtain the (L2(Ω),Lp(Ω))\left({L}^{2}\left(\Omega ),{L}^{p}\left(\Omega ))-global attractors immediately; moreover, such an attractor can attract every bounded subset of L2(Ω){L}^{2}\left(\Omega ) with the Lp+δ{L}^{p+\delta }-norm for any δ∈[0,+∞)\delta \in \left[0,+\infty ). |
format |
article |
author |
Zhu Kaixuan Xie Yongqin |
author_facet |
Zhu Kaixuan Xie Yongqin |
author_sort |
Zhu Kaixuan |
title |
Global attractors for a class of semilinear degenerate parabolic equations |
title_short |
Global attractors for a class of semilinear degenerate parabolic equations |
title_full |
Global attractors for a class of semilinear degenerate parabolic equations |
title_fullStr |
Global attractors for a class of semilinear degenerate parabolic equations |
title_full_unstemmed |
Global attractors for a class of semilinear degenerate parabolic equations |
title_sort |
global attractors for a class of semilinear degenerate parabolic equations |
publisher |
De Gruyter |
publishDate |
2021 |
url |
https://doaj.org/article/42aa706084df4166a2f9ba49938f5232 |
work_keys_str_mv |
AT zhukaixuan globalattractorsforaclassofsemilineardegenerateparabolicequations AT xieyongqin globalattractorsforaclassofsemilineardegenerateparabolicequations |
_version_ |
1718371642790379520 |