Global attractors for a class of semilinear degenerate parabolic equations

In this paper, we consider the long-time behavior for a class of semi-linear degenerate parabolic equations with the nonlinearity ff satisfying the polynomial growth of arbitrary p−1p-1 order. We establish some new estimates, i.e., asymptotic higher-order integrability for the difference of the solu...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Zhu Kaixuan, Xie Yongqin
Formato: article
Lenguaje:EN
Publicado: De Gruyter 2021
Materias:
Acceso en línea:https://doaj.org/article/42aa706084df4166a2f9ba49938f5232
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:42aa706084df4166a2f9ba49938f5232
record_format dspace
spelling oai:doaj.org-article:42aa706084df4166a2f9ba49938f52322021-12-05T14:10:52ZGlobal attractors for a class of semilinear degenerate parabolic equations2391-545510.1515/math-2021-0018https://doaj.org/article/42aa706084df4166a2f9ba49938f52322021-05-01T00:00:00Zhttps://doi.org/10.1515/math-2021-0018https://doaj.org/toc/2391-5455In this paper, we consider the long-time behavior for a class of semi-linear degenerate parabolic equations with the nonlinearity ff satisfying the polynomial growth of arbitrary p−1p-1 order. We establish some new estimates, i.e., asymptotic higher-order integrability for the difference of the solutions near the initial time. As an application, we obtain the (L2(Ω),Lp(Ω))\left({L}^{2}\left(\Omega ),{L}^{p}\left(\Omega ))-global attractors immediately; moreover, such an attractor can attract every bounded subset of L2(Ω){L}^{2}\left(\Omega ) with the Lp+δ{L}^{p+\delta }-norm for any δ∈[0,+∞)\delta \in \left[0,+\infty ).Zhu KaixuanXie YongqinDe Gruyterarticledegenerate parabolic equationspolynomial growth of arbitrary orderasymptotic higher-order integrabilityglobal attractors35b4035b4135k65MathematicsQA1-939ENOpen Mathematics, Vol 19, Iss 1, Pp 212-224 (2021)
institution DOAJ
collection DOAJ
language EN
topic degenerate parabolic equations
polynomial growth of arbitrary order
asymptotic higher-order integrability
global attractors
35b40
35b41
35k65
Mathematics
QA1-939
spellingShingle degenerate parabolic equations
polynomial growth of arbitrary order
asymptotic higher-order integrability
global attractors
35b40
35b41
35k65
Mathematics
QA1-939
Zhu Kaixuan
Xie Yongqin
Global attractors for a class of semilinear degenerate parabolic equations
description In this paper, we consider the long-time behavior for a class of semi-linear degenerate parabolic equations with the nonlinearity ff satisfying the polynomial growth of arbitrary p−1p-1 order. We establish some new estimates, i.e., asymptotic higher-order integrability for the difference of the solutions near the initial time. As an application, we obtain the (L2(Ω),Lp(Ω))\left({L}^{2}\left(\Omega ),{L}^{p}\left(\Omega ))-global attractors immediately; moreover, such an attractor can attract every bounded subset of L2(Ω){L}^{2}\left(\Omega ) with the Lp+δ{L}^{p+\delta }-norm for any δ∈[0,+∞)\delta \in \left[0,+\infty ).
format article
author Zhu Kaixuan
Xie Yongqin
author_facet Zhu Kaixuan
Xie Yongqin
author_sort Zhu Kaixuan
title Global attractors for a class of semilinear degenerate parabolic equations
title_short Global attractors for a class of semilinear degenerate parabolic equations
title_full Global attractors for a class of semilinear degenerate parabolic equations
title_fullStr Global attractors for a class of semilinear degenerate parabolic equations
title_full_unstemmed Global attractors for a class of semilinear degenerate parabolic equations
title_sort global attractors for a class of semilinear degenerate parabolic equations
publisher De Gruyter
publishDate 2021
url https://doaj.org/article/42aa706084df4166a2f9ba49938f5232
work_keys_str_mv AT zhukaixuan globalattractorsforaclassofsemilineardegenerateparabolicequations
AT xieyongqin globalattractorsforaclassofsemilineardegenerateparabolicequations
_version_ 1718371642790379520