Load forecasting of refrigerated display cabinet based on CEEMD–IPSO–LSTM combined model
The load of the showcase is a nonlinear and unstable time series data, and the traditional forecasting method is not applicable. Deep learning algorithms are introduced to predict the load of the showcase. Based on the CEEMD–IPSO–LSTM combination algorithm, this paper builds a refrigerated display c...
Guardado en:
Autores principales: | Pei Yuan, Zhenglin Lei, Qinghui Zeng, Yixiao Wu, Yanli Lu, Chaolong Hu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/42baa8f438984cc5886a444fae2b3c8f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Experimental and numerical study of heat transfer and flow characteristics with different placement of the multi-deck display cabinet in supermarket
por: Yuan Pei, et al.
Publicado: (2021) -
Monthly runoff prediction using modified CEEMD-based weighted integrated model
por: Xinqing Yan, et al.
Publicado: (2021) -
Short-term traffic flow prediction of expressway based on CEEMD-GRU combination model
por: Fuxin SHEN, et al.
Publicado: (2021) -
Three Technocratic Cabinets in the Czech Republic: A Symptom of Party Failure?
por: Brunclík Miloš
Publicado: (2016) -
A fault feature extraction algorithm based on CEEMD-TVD-MOMEDA
por: Jingzong Yang, et al.
Publicado: (2021)