A meta-learning approach for genomic survival analysis
RNA-sequencing data from tumours can be used to predict the prognosis of patients. Here, the authors show that a neural network meta-learning approach can be useful for predicting prognosis from a small number of samples.
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/42bb85ba63e2410989419cfb8d38bbf2 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:42bb85ba63e2410989419cfb8d38bbf2 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:42bb85ba63e2410989419cfb8d38bbf22021-12-02T10:48:00ZA meta-learning approach for genomic survival analysis10.1038/s41467-020-20167-32041-1723https://doaj.org/article/42bb85ba63e2410989419cfb8d38bbf22020-12-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-20167-3https://doaj.org/toc/2041-1723RNA-sequencing data from tumours can be used to predict the prognosis of patients. Here, the authors show that a neural network meta-learning approach can be useful for predicting prognosis from a small number of samples.Yeping Lina QiuHong ZhengArnout DevosHeather SelbyOlivier GevaertNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-11 (2020) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Yeping Lina Qiu Hong Zheng Arnout Devos Heather Selby Olivier Gevaert A meta-learning approach for genomic survival analysis |
description |
RNA-sequencing data from tumours can be used to predict the prognosis of patients. Here, the authors show that a neural network meta-learning approach can be useful for predicting prognosis from a small number of samples. |
format |
article |
author |
Yeping Lina Qiu Hong Zheng Arnout Devos Heather Selby Olivier Gevaert |
author_facet |
Yeping Lina Qiu Hong Zheng Arnout Devos Heather Selby Olivier Gevaert |
author_sort |
Yeping Lina Qiu |
title |
A meta-learning approach for genomic survival analysis |
title_short |
A meta-learning approach for genomic survival analysis |
title_full |
A meta-learning approach for genomic survival analysis |
title_fullStr |
A meta-learning approach for genomic survival analysis |
title_full_unstemmed |
A meta-learning approach for genomic survival analysis |
title_sort |
meta-learning approach for genomic survival analysis |
publisher |
Nature Portfolio |
publishDate |
2020 |
url |
https://doaj.org/article/42bb85ba63e2410989419cfb8d38bbf2 |
work_keys_str_mv |
AT yepinglinaqiu ametalearningapproachforgenomicsurvivalanalysis AT hongzheng ametalearningapproachforgenomicsurvivalanalysis AT arnoutdevos ametalearningapproachforgenomicsurvivalanalysis AT heatherselby ametalearningapproachforgenomicsurvivalanalysis AT oliviergevaert ametalearningapproachforgenomicsurvivalanalysis AT yepinglinaqiu metalearningapproachforgenomicsurvivalanalysis AT hongzheng metalearningapproachforgenomicsurvivalanalysis AT arnoutdevos metalearningapproachforgenomicsurvivalanalysis AT heatherselby metalearningapproachforgenomicsurvivalanalysis AT oliviergevaert metalearningapproachforgenomicsurvivalanalysis |
_version_ |
1718396706503000064 |