A meta-learning approach for genomic survival analysis
RNA-sequencing data from tumours can be used to predict the prognosis of patients. Here, the authors show that a neural network meta-learning approach can be useful for predicting prognosis from a small number of samples.
Guardado en:
Autores principales: | Yeping Lina Qiu, Hong Zheng, Arnout Devos, Heather Selby, Olivier Gevaert |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/42bb85ba63e2410989419cfb8d38bbf2 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A unified survival-analysis approach to insect population development and survival times
por: Zhanshan (Sam) Ma
Publicado: (2021) -
The effect of metformin on survival of patients with pancreatic cancer: a meta-analysis
por: Xiaogang Li, et al.
Publicado: (2017) -
Model-based assessment of replicability for genome-wide association meta-analysis
por: Daniel McGuire, et al.
Publicado: (2021) -
Survival of vascularized osseous flaps in mandibular reconstruction: A network meta-analysis.
por: Mubarak Ahmed Mashrah, et al.
Publicado: (2021) -
Survival of vascularized osseous flaps in mandibular reconstruction: A network meta-analysis
por: Mubarak Ahmed Mashrah, et al.
Publicado: (2021)