Cell-level metadata are indispensable for documenting single-cell sequencing datasets.
Single-cell RNA sequencing (scRNA-seq) provides an unprecedented view of cellular diversity of biological systems. However, across the thousands of publications and datasets generated using this technology, we estimate that only a minority (<25%) of studies provide cell-level metadata information...
Guardado en:
Autores principales: | Sidhant Puntambekar, Jay R Hesselberth, Kent A Riemondy, Rui Fu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/42d096b161074f7ea67e1fd927da2edb |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
BABEL: using deep learning to translate between single-cell datasets
por: George Andrew S. Inglis
Publicado: (2021) -
A patient-centric dataset of images and metadata for identifying melanomas using clinical context
por: Veronica Rotemberg, et al.
Publicado: (2021) -
A multi-center cross-platform single-cell RNA sequencing reference dataset
por: Xin Chen, et al.
Publicado: (2021) -
HIF-2α is indispensable for regulatory T cell function
por: Tzu-Sheng Hsu, et al.
Publicado: (2020) -
Author Correction: A patient-centric dataset of images and metadata for identifying melanomas using clinical context
por: Veronica Rotemberg, et al.
Publicado: (2021)