Membrane Perfusion of Hydrophobic Substances Around Channels Embedded in the Contact Bubble Bilayer
Abstract In fluidic biomembranes, lipids and membrane proteins diffuse restlessly, and lipid compositions change steadily. To mimic dynamic behavior of the biomembranes, a method for introducing rapid changes in the constituents in the lipid bilayer was developed. In contact bubble bilayers (CBB), a...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/42d85d78e90b47e7820bbb1db520c530 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:42d85d78e90b47e7820bbb1db520c530 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:42d85d78e90b47e7820bbb1db520c5302021-12-02T16:06:08ZMembrane Perfusion of Hydrophobic Substances Around Channels Embedded in the Contact Bubble Bilayer10.1038/s41598-017-07048-42045-2322https://doaj.org/article/42d85d78e90b47e7820bbb1db520c5302017-07-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-07048-4https://doaj.org/toc/2045-2322Abstract In fluidic biomembranes, lipids and membrane proteins diffuse restlessly, and lipid compositions change steadily. To mimic dynamic behavior of the biomembranes, a method for introducing rapid changes in the constituents in the lipid bilayer was developed. In contact bubble bilayers (CBB), as a water-in-oil droplet bilayer system, the bilayer hydrophobic interior is contiguous with the bulk oil phase. Making use of this geometrical feature as an access route, hydrophobic substances were administered into the bilayer. Polytheonamide B, a cytotoxic hydrophobic peptide, was applied, and oriented incorporation and relevant single-channel current recordings were enabled. Nystatin was pre-loaded in the CBB, and sterol perfusion exhibited slow development of the macroscopic current. On the contrary, the reconstituted KcsA potassium channels immediately attenuate the channel activity when cholesterol was applied. This oil-phase route in the CBB allows rapid perfusion of hydrophobic substances around the bilayer-embedded channels during continuous recordings of channel currents.Masayuki IwamotoShigetoshi OikiNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-8 (2017) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Masayuki Iwamoto Shigetoshi Oiki Membrane Perfusion of Hydrophobic Substances Around Channels Embedded in the Contact Bubble Bilayer |
description |
Abstract In fluidic biomembranes, lipids and membrane proteins diffuse restlessly, and lipid compositions change steadily. To mimic dynamic behavior of the biomembranes, a method for introducing rapid changes in the constituents in the lipid bilayer was developed. In contact bubble bilayers (CBB), as a water-in-oil droplet bilayer system, the bilayer hydrophobic interior is contiguous with the bulk oil phase. Making use of this geometrical feature as an access route, hydrophobic substances were administered into the bilayer. Polytheonamide B, a cytotoxic hydrophobic peptide, was applied, and oriented incorporation and relevant single-channel current recordings were enabled. Nystatin was pre-loaded in the CBB, and sterol perfusion exhibited slow development of the macroscopic current. On the contrary, the reconstituted KcsA potassium channels immediately attenuate the channel activity when cholesterol was applied. This oil-phase route in the CBB allows rapid perfusion of hydrophobic substances around the bilayer-embedded channels during continuous recordings of channel currents. |
format |
article |
author |
Masayuki Iwamoto Shigetoshi Oiki |
author_facet |
Masayuki Iwamoto Shigetoshi Oiki |
author_sort |
Masayuki Iwamoto |
title |
Membrane Perfusion of Hydrophobic Substances Around Channels Embedded in the Contact Bubble Bilayer |
title_short |
Membrane Perfusion of Hydrophobic Substances Around Channels Embedded in the Contact Bubble Bilayer |
title_full |
Membrane Perfusion of Hydrophobic Substances Around Channels Embedded in the Contact Bubble Bilayer |
title_fullStr |
Membrane Perfusion of Hydrophobic Substances Around Channels Embedded in the Contact Bubble Bilayer |
title_full_unstemmed |
Membrane Perfusion of Hydrophobic Substances Around Channels Embedded in the Contact Bubble Bilayer |
title_sort |
membrane perfusion of hydrophobic substances around channels embedded in the contact bubble bilayer |
publisher |
Nature Portfolio |
publishDate |
2017 |
url |
https://doaj.org/article/42d85d78e90b47e7820bbb1db520c530 |
work_keys_str_mv |
AT masayukiiwamoto membraneperfusionofhydrophobicsubstancesaroundchannelsembeddedinthecontactbubblebilayer AT shigetoshioiki membraneperfusionofhydrophobicsubstancesaroundchannelsembeddedinthecontactbubblebilayer |
_version_ |
1718385082595540992 |