Highly-stable black phosphorus field-effect transistors with low density of oxide traps

Electronics: encapsulated black phosphorous enables stable, long-lasting transistors Field effect transistors made of ultra-thin black phosphorous can retain long-term stability and reproducible electrical characteristics. A team led by Prof. Deji Akinwande at UT Austin developed a conformal encapsu...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Yu. Yu. Illarionov, M. Waltl, G. Rzepa, T. Knobloch, J.-S. Kim, D. Akinwande, T. Grasser
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
Acceso en línea:https://doaj.org/article/42dbdc5beb3c45e1bf47ac3c7c484a9b
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:42dbdc5beb3c45e1bf47ac3c7c484a9b
record_format dspace
spelling oai:doaj.org-article:42dbdc5beb3c45e1bf47ac3c7c484a9b2021-12-02T13:41:45ZHighly-stable black phosphorus field-effect transistors with low density of oxide traps10.1038/s41699-017-0025-32397-7132https://doaj.org/article/42dbdc5beb3c45e1bf47ac3c7c484a9b2017-07-01T00:00:00Zhttps://doi.org/10.1038/s41699-017-0025-3https://doaj.org/toc/2397-7132Electronics: encapsulated black phosphorous enables stable, long-lasting transistors Field effect transistors made of ultra-thin black phosphorous can retain long-term stability and reproducible electrical characteristics. A team led by Prof. Deji Akinwande at UT Austin developed a conformal encapsulation method of black phosphorous transistors with a 25 nm thick Al2O3 layer. Characterization of these devices by Dr. Yury Illarionov at TU Wien has shown that encapsulation results in a substantial improvement of device stability and reliability for at least 17 months in ambient conditions. The density of oxide traps that would cause deleterious variations of the device threshold voltage, thus hindering reproducibility, is as low as 1017 cm−3/eV at room temperature. This is comparable to values obtained for commercial silicon devices. Remarkably, the subthreshold slope of the black phosphorous field-effect transistors becomes steeper after several months, a signature of performance improvement that points towards a positive aging effect, despite extended storage and operation in the laboratory environment.Yu. Yu. IllarionovM. WaltlG. RzepaT. KnoblochJ.-S. KimD. AkinwandeT. GrasserNature PortfolioarticleMaterials of engineering and construction. Mechanics of materialsTA401-492ChemistryQD1-999ENnpj 2D Materials and Applications, Vol 1, Iss 1, Pp 1-7 (2017)
institution DOAJ
collection DOAJ
language EN
topic Materials of engineering and construction. Mechanics of materials
TA401-492
Chemistry
QD1-999
spellingShingle Materials of engineering and construction. Mechanics of materials
TA401-492
Chemistry
QD1-999
Yu. Yu. Illarionov
M. Waltl
G. Rzepa
T. Knobloch
J.-S. Kim
D. Akinwande
T. Grasser
Highly-stable black phosphorus field-effect transistors with low density of oxide traps
description Electronics: encapsulated black phosphorous enables stable, long-lasting transistors Field effect transistors made of ultra-thin black phosphorous can retain long-term stability and reproducible electrical characteristics. A team led by Prof. Deji Akinwande at UT Austin developed a conformal encapsulation method of black phosphorous transistors with a 25 nm thick Al2O3 layer. Characterization of these devices by Dr. Yury Illarionov at TU Wien has shown that encapsulation results in a substantial improvement of device stability and reliability for at least 17 months in ambient conditions. The density of oxide traps that would cause deleterious variations of the device threshold voltage, thus hindering reproducibility, is as low as 1017 cm−3/eV at room temperature. This is comparable to values obtained for commercial silicon devices. Remarkably, the subthreshold slope of the black phosphorous field-effect transistors becomes steeper after several months, a signature of performance improvement that points towards a positive aging effect, despite extended storage and operation in the laboratory environment.
format article
author Yu. Yu. Illarionov
M. Waltl
G. Rzepa
T. Knobloch
J.-S. Kim
D. Akinwande
T. Grasser
author_facet Yu. Yu. Illarionov
M. Waltl
G. Rzepa
T. Knobloch
J.-S. Kim
D. Akinwande
T. Grasser
author_sort Yu. Yu. Illarionov
title Highly-stable black phosphorus field-effect transistors with low density of oxide traps
title_short Highly-stable black phosphorus field-effect transistors with low density of oxide traps
title_full Highly-stable black phosphorus field-effect transistors with low density of oxide traps
title_fullStr Highly-stable black phosphorus field-effect transistors with low density of oxide traps
title_full_unstemmed Highly-stable black phosphorus field-effect transistors with low density of oxide traps
title_sort highly-stable black phosphorus field-effect transistors with low density of oxide traps
publisher Nature Portfolio
publishDate 2017
url https://doaj.org/article/42dbdc5beb3c45e1bf47ac3c7c484a9b
work_keys_str_mv AT yuyuillarionov highlystableblackphosphorusfieldeffecttransistorswithlowdensityofoxidetraps
AT mwaltl highlystableblackphosphorusfieldeffecttransistorswithlowdensityofoxidetraps
AT grzepa highlystableblackphosphorusfieldeffecttransistorswithlowdensityofoxidetraps
AT tknobloch highlystableblackphosphorusfieldeffecttransistorswithlowdensityofoxidetraps
AT jskim highlystableblackphosphorusfieldeffecttransistorswithlowdensityofoxidetraps
AT dakinwande highlystableblackphosphorusfieldeffecttransistorswithlowdensityofoxidetraps
AT tgrasser highlystableblackphosphorusfieldeffecttransistorswithlowdensityofoxidetraps
_version_ 1718392551259504640