The active site of a carbohydrate esterase displays divergent catalytic and noncatalytic binding functions.

Multifunctional proteins, which play a critical role in many biological processes, have typically evolved through the recruitment of different domains that have the required functional diversity. Thus the different activities displayed by these proteins are mediated by spatially distinct domains, co...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Cedric Montanier, Victoria A Money, Virginia M R Pires, James E Flint, Benedita A Pinheiro, Arun Goyal, José A M Prates, Atsushi Izumi, Henrik Stålbrand, Carl Morland, Alan Cartmell, Katarina Kolenova, Evangelos Topakas, Eleanor J Dodson, David N Bolam, Gideon J Davies, Carlos M G A Fontes, Harry J Gilbert
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2009
Materias:
Acceso en línea:https://doaj.org/article/42dd888ceda24770acd6bea8998a9fc8
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:42dd888ceda24770acd6bea8998a9fc8
record_format dspace
spelling oai:doaj.org-article:42dd888ceda24770acd6bea8998a9fc82021-11-25T05:33:45ZThe active site of a carbohydrate esterase displays divergent catalytic and noncatalytic binding functions.1544-91731545-788510.1371/journal.pbio.1000071https://doaj.org/article/42dd888ceda24770acd6bea8998a9fc82009-03-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/pmid/19338387/?tool=EBIhttps://doaj.org/toc/1544-9173https://doaj.org/toc/1545-7885Multifunctional proteins, which play a critical role in many biological processes, have typically evolved through the recruitment of different domains that have the required functional diversity. Thus the different activities displayed by these proteins are mediated by spatially distinct domains, consistent with the specific chemical requirements of each activity. Indeed, current evolutionary theory argues that the colocalization of diverse activities within an enzyme is likely to be a rare event, because it would compromise the existing activity of the protein. In contrast to this view, a potential example of multifunctional recruitment into a single protein domain is provided by CtCel5C-CE2, which contains an N-terminal module that displays cellulase activity and a C-terminal module, CtCE2, which exhibits a noncatalytic cellulose-binding function but also shares sequence identity with the CE2 family of esterases. Here we show that, unlike other CE2 members, the CtCE2 domain displays divergent catalytic esterase and noncatalytic carbohydrate binding functions. Intriguingly, these diverse activities are housed within the same site on the protein. Thus, a critical component of the active site of CtCE2, the catalytic Ser-His dyad, in harness with inserted aromatic residues, confers noncatalytic binding to cellulose whilst the active site of the domain retains its esterase activity. CtCE2 catalyses deacetylation of noncellulosic plant structural polysaccharides to deprotect these substrates for attack by other enzymes. Yet it also acts as a cellulose-binding domain, which promotes the activity of the appended cellulase on recalcitrant substrates. The CE2 family encapsulates the requirement for multiple activities by biocatalysts that attack challenging macromolecular substrates, including the grafting of a second, powerful and discrete noncatalytic binding functionality into the active site of an enzyme. This article provides a rare example of "gene sharing," where the introduction of a second functionality into the active site of an enzyme does not compromise the original activity of the biocatalyst.Cedric MontanierVictoria A MoneyVirginia M R PiresJames E FlintBenedita A PinheiroArun GoyalJosé A M PratesAtsushi IzumiHenrik StålbrandCarl MorlandAlan CartmellKatarina KolenovaEvangelos TopakasEleanor J DodsonDavid N BolamGideon J DaviesCarlos M G A FontesHarry J GilbertPublic Library of Science (PLoS)articleBiology (General)QH301-705.5ENPLoS Biology, Vol 7, Iss 3, p e71 (2009)
institution DOAJ
collection DOAJ
language EN
topic Biology (General)
QH301-705.5
spellingShingle Biology (General)
QH301-705.5
Cedric Montanier
Victoria A Money
Virginia M R Pires
James E Flint
Benedita A Pinheiro
Arun Goyal
José A M Prates
Atsushi Izumi
Henrik Stålbrand
Carl Morland
Alan Cartmell
Katarina Kolenova
Evangelos Topakas
Eleanor J Dodson
David N Bolam
Gideon J Davies
Carlos M G A Fontes
Harry J Gilbert
The active site of a carbohydrate esterase displays divergent catalytic and noncatalytic binding functions.
description Multifunctional proteins, which play a critical role in many biological processes, have typically evolved through the recruitment of different domains that have the required functional diversity. Thus the different activities displayed by these proteins are mediated by spatially distinct domains, consistent with the specific chemical requirements of each activity. Indeed, current evolutionary theory argues that the colocalization of diverse activities within an enzyme is likely to be a rare event, because it would compromise the existing activity of the protein. In contrast to this view, a potential example of multifunctional recruitment into a single protein domain is provided by CtCel5C-CE2, which contains an N-terminal module that displays cellulase activity and a C-terminal module, CtCE2, which exhibits a noncatalytic cellulose-binding function but also shares sequence identity with the CE2 family of esterases. Here we show that, unlike other CE2 members, the CtCE2 domain displays divergent catalytic esterase and noncatalytic carbohydrate binding functions. Intriguingly, these diverse activities are housed within the same site on the protein. Thus, a critical component of the active site of CtCE2, the catalytic Ser-His dyad, in harness with inserted aromatic residues, confers noncatalytic binding to cellulose whilst the active site of the domain retains its esterase activity. CtCE2 catalyses deacetylation of noncellulosic plant structural polysaccharides to deprotect these substrates for attack by other enzymes. Yet it also acts as a cellulose-binding domain, which promotes the activity of the appended cellulase on recalcitrant substrates. The CE2 family encapsulates the requirement for multiple activities by biocatalysts that attack challenging macromolecular substrates, including the grafting of a second, powerful and discrete noncatalytic binding functionality into the active site of an enzyme. This article provides a rare example of "gene sharing," where the introduction of a second functionality into the active site of an enzyme does not compromise the original activity of the biocatalyst.
format article
author Cedric Montanier
Victoria A Money
Virginia M R Pires
James E Flint
Benedita A Pinheiro
Arun Goyal
José A M Prates
Atsushi Izumi
Henrik Stålbrand
Carl Morland
Alan Cartmell
Katarina Kolenova
Evangelos Topakas
Eleanor J Dodson
David N Bolam
Gideon J Davies
Carlos M G A Fontes
Harry J Gilbert
author_facet Cedric Montanier
Victoria A Money
Virginia M R Pires
James E Flint
Benedita A Pinheiro
Arun Goyal
José A M Prates
Atsushi Izumi
Henrik Stålbrand
Carl Morland
Alan Cartmell
Katarina Kolenova
Evangelos Topakas
Eleanor J Dodson
David N Bolam
Gideon J Davies
Carlos M G A Fontes
Harry J Gilbert
author_sort Cedric Montanier
title The active site of a carbohydrate esterase displays divergent catalytic and noncatalytic binding functions.
title_short The active site of a carbohydrate esterase displays divergent catalytic and noncatalytic binding functions.
title_full The active site of a carbohydrate esterase displays divergent catalytic and noncatalytic binding functions.
title_fullStr The active site of a carbohydrate esterase displays divergent catalytic and noncatalytic binding functions.
title_full_unstemmed The active site of a carbohydrate esterase displays divergent catalytic and noncatalytic binding functions.
title_sort active site of a carbohydrate esterase displays divergent catalytic and noncatalytic binding functions.
publisher Public Library of Science (PLoS)
publishDate 2009
url https://doaj.org/article/42dd888ceda24770acd6bea8998a9fc8
work_keys_str_mv AT cedricmontanier theactivesiteofacarbohydrateesterasedisplaysdivergentcatalyticandnoncatalyticbindingfunctions
AT victoriaamoney theactivesiteofacarbohydrateesterasedisplaysdivergentcatalyticandnoncatalyticbindingfunctions
AT virginiamrpires theactivesiteofacarbohydrateesterasedisplaysdivergentcatalyticandnoncatalyticbindingfunctions
AT jameseflint theactivesiteofacarbohydrateesterasedisplaysdivergentcatalyticandnoncatalyticbindingfunctions
AT beneditaapinheiro theactivesiteofacarbohydrateesterasedisplaysdivergentcatalyticandnoncatalyticbindingfunctions
AT arungoyal theactivesiteofacarbohydrateesterasedisplaysdivergentcatalyticandnoncatalyticbindingfunctions
AT joseamprates theactivesiteofacarbohydrateesterasedisplaysdivergentcatalyticandnoncatalyticbindingfunctions
AT atsushiizumi theactivesiteofacarbohydrateesterasedisplaysdivergentcatalyticandnoncatalyticbindingfunctions
AT henrikstalbrand theactivesiteofacarbohydrateesterasedisplaysdivergentcatalyticandnoncatalyticbindingfunctions
AT carlmorland theactivesiteofacarbohydrateesterasedisplaysdivergentcatalyticandnoncatalyticbindingfunctions
AT alancartmell theactivesiteofacarbohydrateesterasedisplaysdivergentcatalyticandnoncatalyticbindingfunctions
AT katarinakolenova theactivesiteofacarbohydrateesterasedisplaysdivergentcatalyticandnoncatalyticbindingfunctions
AT evangelostopakas theactivesiteofacarbohydrateesterasedisplaysdivergentcatalyticandnoncatalyticbindingfunctions
AT eleanorjdodson theactivesiteofacarbohydrateesterasedisplaysdivergentcatalyticandnoncatalyticbindingfunctions
AT davidnbolam theactivesiteofacarbohydrateesterasedisplaysdivergentcatalyticandnoncatalyticbindingfunctions
AT gideonjdavies theactivesiteofacarbohydrateesterasedisplaysdivergentcatalyticandnoncatalyticbindingfunctions
AT carlosmgafontes theactivesiteofacarbohydrateesterasedisplaysdivergentcatalyticandnoncatalyticbindingfunctions
AT harryjgilbert theactivesiteofacarbohydrateesterasedisplaysdivergentcatalyticandnoncatalyticbindingfunctions
AT cedricmontanier activesiteofacarbohydrateesterasedisplaysdivergentcatalyticandnoncatalyticbindingfunctions
AT victoriaamoney activesiteofacarbohydrateesterasedisplaysdivergentcatalyticandnoncatalyticbindingfunctions
AT virginiamrpires activesiteofacarbohydrateesterasedisplaysdivergentcatalyticandnoncatalyticbindingfunctions
AT jameseflint activesiteofacarbohydrateesterasedisplaysdivergentcatalyticandnoncatalyticbindingfunctions
AT beneditaapinheiro activesiteofacarbohydrateesterasedisplaysdivergentcatalyticandnoncatalyticbindingfunctions
AT arungoyal activesiteofacarbohydrateesterasedisplaysdivergentcatalyticandnoncatalyticbindingfunctions
AT joseamprates activesiteofacarbohydrateesterasedisplaysdivergentcatalyticandnoncatalyticbindingfunctions
AT atsushiizumi activesiteofacarbohydrateesterasedisplaysdivergentcatalyticandnoncatalyticbindingfunctions
AT henrikstalbrand activesiteofacarbohydrateesterasedisplaysdivergentcatalyticandnoncatalyticbindingfunctions
AT carlmorland activesiteofacarbohydrateesterasedisplaysdivergentcatalyticandnoncatalyticbindingfunctions
AT alancartmell activesiteofacarbohydrateesterasedisplaysdivergentcatalyticandnoncatalyticbindingfunctions
AT katarinakolenova activesiteofacarbohydrateesterasedisplaysdivergentcatalyticandnoncatalyticbindingfunctions
AT evangelostopakas activesiteofacarbohydrateesterasedisplaysdivergentcatalyticandnoncatalyticbindingfunctions
AT eleanorjdodson activesiteofacarbohydrateesterasedisplaysdivergentcatalyticandnoncatalyticbindingfunctions
AT davidnbolam activesiteofacarbohydrateesterasedisplaysdivergentcatalyticandnoncatalyticbindingfunctions
AT gideonjdavies activesiteofacarbohydrateesterasedisplaysdivergentcatalyticandnoncatalyticbindingfunctions
AT carlosmgafontes activesiteofacarbohydrateesterasedisplaysdivergentcatalyticandnoncatalyticbindingfunctions
AT harryjgilbert activesiteofacarbohydrateesterasedisplaysdivergentcatalyticandnoncatalyticbindingfunctions
_version_ 1718414632014577664