The active site of a carbohydrate esterase displays divergent catalytic and noncatalytic binding functions.
Multifunctional proteins, which play a critical role in many biological processes, have typically evolved through the recruitment of different domains that have the required functional diversity. Thus the different activities displayed by these proteins are mediated by spatially distinct domains, co...
Guardado en:
Autores principales: | , , , , , , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2009
|
Materias: | |
Acceso en línea: | https://doaj.org/article/42dd888ceda24770acd6bea8998a9fc8 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:42dd888ceda24770acd6bea8998a9fc8 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:42dd888ceda24770acd6bea8998a9fc82021-11-25T05:33:45ZThe active site of a carbohydrate esterase displays divergent catalytic and noncatalytic binding functions.1544-91731545-788510.1371/journal.pbio.1000071https://doaj.org/article/42dd888ceda24770acd6bea8998a9fc82009-03-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/pmid/19338387/?tool=EBIhttps://doaj.org/toc/1544-9173https://doaj.org/toc/1545-7885Multifunctional proteins, which play a critical role in many biological processes, have typically evolved through the recruitment of different domains that have the required functional diversity. Thus the different activities displayed by these proteins are mediated by spatially distinct domains, consistent with the specific chemical requirements of each activity. Indeed, current evolutionary theory argues that the colocalization of diverse activities within an enzyme is likely to be a rare event, because it would compromise the existing activity of the protein. In contrast to this view, a potential example of multifunctional recruitment into a single protein domain is provided by CtCel5C-CE2, which contains an N-terminal module that displays cellulase activity and a C-terminal module, CtCE2, which exhibits a noncatalytic cellulose-binding function but also shares sequence identity with the CE2 family of esterases. Here we show that, unlike other CE2 members, the CtCE2 domain displays divergent catalytic esterase and noncatalytic carbohydrate binding functions. Intriguingly, these diverse activities are housed within the same site on the protein. Thus, a critical component of the active site of CtCE2, the catalytic Ser-His dyad, in harness with inserted aromatic residues, confers noncatalytic binding to cellulose whilst the active site of the domain retains its esterase activity. CtCE2 catalyses deacetylation of noncellulosic plant structural polysaccharides to deprotect these substrates for attack by other enzymes. Yet it also acts as a cellulose-binding domain, which promotes the activity of the appended cellulase on recalcitrant substrates. The CE2 family encapsulates the requirement for multiple activities by biocatalysts that attack challenging macromolecular substrates, including the grafting of a second, powerful and discrete noncatalytic binding functionality into the active site of an enzyme. This article provides a rare example of "gene sharing," where the introduction of a second functionality into the active site of an enzyme does not compromise the original activity of the biocatalyst.Cedric MontanierVictoria A MoneyVirginia M R PiresJames E FlintBenedita A PinheiroArun GoyalJosé A M PratesAtsushi IzumiHenrik StålbrandCarl MorlandAlan CartmellKatarina KolenovaEvangelos TopakasEleanor J DodsonDavid N BolamGideon J DaviesCarlos M G A FontesHarry J GilbertPublic Library of Science (PLoS)articleBiology (General)QH301-705.5ENPLoS Biology, Vol 7, Iss 3, p e71 (2009) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Biology (General) QH301-705.5 |
spellingShingle |
Biology (General) QH301-705.5 Cedric Montanier Victoria A Money Virginia M R Pires James E Flint Benedita A Pinheiro Arun Goyal José A M Prates Atsushi Izumi Henrik Stålbrand Carl Morland Alan Cartmell Katarina Kolenova Evangelos Topakas Eleanor J Dodson David N Bolam Gideon J Davies Carlos M G A Fontes Harry J Gilbert The active site of a carbohydrate esterase displays divergent catalytic and noncatalytic binding functions. |
description |
Multifunctional proteins, which play a critical role in many biological processes, have typically evolved through the recruitment of different domains that have the required functional diversity. Thus the different activities displayed by these proteins are mediated by spatially distinct domains, consistent with the specific chemical requirements of each activity. Indeed, current evolutionary theory argues that the colocalization of diverse activities within an enzyme is likely to be a rare event, because it would compromise the existing activity of the protein. In contrast to this view, a potential example of multifunctional recruitment into a single protein domain is provided by CtCel5C-CE2, which contains an N-terminal module that displays cellulase activity and a C-terminal module, CtCE2, which exhibits a noncatalytic cellulose-binding function but also shares sequence identity with the CE2 family of esterases. Here we show that, unlike other CE2 members, the CtCE2 domain displays divergent catalytic esterase and noncatalytic carbohydrate binding functions. Intriguingly, these diverse activities are housed within the same site on the protein. Thus, a critical component of the active site of CtCE2, the catalytic Ser-His dyad, in harness with inserted aromatic residues, confers noncatalytic binding to cellulose whilst the active site of the domain retains its esterase activity. CtCE2 catalyses deacetylation of noncellulosic plant structural polysaccharides to deprotect these substrates for attack by other enzymes. Yet it also acts as a cellulose-binding domain, which promotes the activity of the appended cellulase on recalcitrant substrates. The CE2 family encapsulates the requirement for multiple activities by biocatalysts that attack challenging macromolecular substrates, including the grafting of a second, powerful and discrete noncatalytic binding functionality into the active site of an enzyme. This article provides a rare example of "gene sharing," where the introduction of a second functionality into the active site of an enzyme does not compromise the original activity of the biocatalyst. |
format |
article |
author |
Cedric Montanier Victoria A Money Virginia M R Pires James E Flint Benedita A Pinheiro Arun Goyal José A M Prates Atsushi Izumi Henrik Stålbrand Carl Morland Alan Cartmell Katarina Kolenova Evangelos Topakas Eleanor J Dodson David N Bolam Gideon J Davies Carlos M G A Fontes Harry J Gilbert |
author_facet |
Cedric Montanier Victoria A Money Virginia M R Pires James E Flint Benedita A Pinheiro Arun Goyal José A M Prates Atsushi Izumi Henrik Stålbrand Carl Morland Alan Cartmell Katarina Kolenova Evangelos Topakas Eleanor J Dodson David N Bolam Gideon J Davies Carlos M G A Fontes Harry J Gilbert |
author_sort |
Cedric Montanier |
title |
The active site of a carbohydrate esterase displays divergent catalytic and noncatalytic binding functions. |
title_short |
The active site of a carbohydrate esterase displays divergent catalytic and noncatalytic binding functions. |
title_full |
The active site of a carbohydrate esterase displays divergent catalytic and noncatalytic binding functions. |
title_fullStr |
The active site of a carbohydrate esterase displays divergent catalytic and noncatalytic binding functions. |
title_full_unstemmed |
The active site of a carbohydrate esterase displays divergent catalytic and noncatalytic binding functions. |
title_sort |
active site of a carbohydrate esterase displays divergent catalytic and noncatalytic binding functions. |
publisher |
Public Library of Science (PLoS) |
publishDate |
2009 |
url |
https://doaj.org/article/42dd888ceda24770acd6bea8998a9fc8 |
work_keys_str_mv |
AT cedricmontanier theactivesiteofacarbohydrateesterasedisplaysdivergentcatalyticandnoncatalyticbindingfunctions AT victoriaamoney theactivesiteofacarbohydrateesterasedisplaysdivergentcatalyticandnoncatalyticbindingfunctions AT virginiamrpires theactivesiteofacarbohydrateesterasedisplaysdivergentcatalyticandnoncatalyticbindingfunctions AT jameseflint theactivesiteofacarbohydrateesterasedisplaysdivergentcatalyticandnoncatalyticbindingfunctions AT beneditaapinheiro theactivesiteofacarbohydrateesterasedisplaysdivergentcatalyticandnoncatalyticbindingfunctions AT arungoyal theactivesiteofacarbohydrateesterasedisplaysdivergentcatalyticandnoncatalyticbindingfunctions AT joseamprates theactivesiteofacarbohydrateesterasedisplaysdivergentcatalyticandnoncatalyticbindingfunctions AT atsushiizumi theactivesiteofacarbohydrateesterasedisplaysdivergentcatalyticandnoncatalyticbindingfunctions AT henrikstalbrand theactivesiteofacarbohydrateesterasedisplaysdivergentcatalyticandnoncatalyticbindingfunctions AT carlmorland theactivesiteofacarbohydrateesterasedisplaysdivergentcatalyticandnoncatalyticbindingfunctions AT alancartmell theactivesiteofacarbohydrateesterasedisplaysdivergentcatalyticandnoncatalyticbindingfunctions AT katarinakolenova theactivesiteofacarbohydrateesterasedisplaysdivergentcatalyticandnoncatalyticbindingfunctions AT evangelostopakas theactivesiteofacarbohydrateesterasedisplaysdivergentcatalyticandnoncatalyticbindingfunctions AT eleanorjdodson theactivesiteofacarbohydrateesterasedisplaysdivergentcatalyticandnoncatalyticbindingfunctions AT davidnbolam theactivesiteofacarbohydrateesterasedisplaysdivergentcatalyticandnoncatalyticbindingfunctions AT gideonjdavies theactivesiteofacarbohydrateesterasedisplaysdivergentcatalyticandnoncatalyticbindingfunctions AT carlosmgafontes theactivesiteofacarbohydrateesterasedisplaysdivergentcatalyticandnoncatalyticbindingfunctions AT harryjgilbert theactivesiteofacarbohydrateesterasedisplaysdivergentcatalyticandnoncatalyticbindingfunctions AT cedricmontanier activesiteofacarbohydrateesterasedisplaysdivergentcatalyticandnoncatalyticbindingfunctions AT victoriaamoney activesiteofacarbohydrateesterasedisplaysdivergentcatalyticandnoncatalyticbindingfunctions AT virginiamrpires activesiteofacarbohydrateesterasedisplaysdivergentcatalyticandnoncatalyticbindingfunctions AT jameseflint activesiteofacarbohydrateesterasedisplaysdivergentcatalyticandnoncatalyticbindingfunctions AT beneditaapinheiro activesiteofacarbohydrateesterasedisplaysdivergentcatalyticandnoncatalyticbindingfunctions AT arungoyal activesiteofacarbohydrateesterasedisplaysdivergentcatalyticandnoncatalyticbindingfunctions AT joseamprates activesiteofacarbohydrateesterasedisplaysdivergentcatalyticandnoncatalyticbindingfunctions AT atsushiizumi activesiteofacarbohydrateesterasedisplaysdivergentcatalyticandnoncatalyticbindingfunctions AT henrikstalbrand activesiteofacarbohydrateesterasedisplaysdivergentcatalyticandnoncatalyticbindingfunctions AT carlmorland activesiteofacarbohydrateesterasedisplaysdivergentcatalyticandnoncatalyticbindingfunctions AT alancartmell activesiteofacarbohydrateesterasedisplaysdivergentcatalyticandnoncatalyticbindingfunctions AT katarinakolenova activesiteofacarbohydrateesterasedisplaysdivergentcatalyticandnoncatalyticbindingfunctions AT evangelostopakas activesiteofacarbohydrateesterasedisplaysdivergentcatalyticandnoncatalyticbindingfunctions AT eleanorjdodson activesiteofacarbohydrateesterasedisplaysdivergentcatalyticandnoncatalyticbindingfunctions AT davidnbolam activesiteofacarbohydrateesterasedisplaysdivergentcatalyticandnoncatalyticbindingfunctions AT gideonjdavies activesiteofacarbohydrateesterasedisplaysdivergentcatalyticandnoncatalyticbindingfunctions AT carlosmgafontes activesiteofacarbohydrateesterasedisplaysdivergentcatalyticandnoncatalyticbindingfunctions AT harryjgilbert activesiteofacarbohydrateesterasedisplaysdivergentcatalyticandnoncatalyticbindingfunctions |
_version_ |
1718414632014577664 |