Machine-Learning-Based Android Malware Family Classification Using Built-In and Custom Permissions
Malware family classification is grouping malware samples that have the same or similar characteristics into the same family. It plays a crucial role in understanding notable malicious patterns and recovering from malware infections. Although many machine learning approaches have been devised for th...
Guardado en:
Autores principales: | Minki Kim, Daehan Kim, Changha Hwang, Seongje Cho, Sangchul Han, Minkyu Park |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/42e84cfec1774c0aa49eb9db94b74570 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Fuzzy Integral-Based Multi-Classifiers Ensemble for Android Malware Classification
por: Altyeb Taha, et al.
Publicado: (2021) -
Recent Advances in Android Mobile Malware Detection: A Systematic Literature Review
por: Abdulaziz Alzubaidi
Publicado: (2021) -
Android Malware Detection Using Machine Learning with Feature Selection Based on the Genetic Algorithm
por: Jaehyeong Lee, et al.
Publicado: (2021) -
DroidEnsemble: Detecting Android Malicious Applications With Ensemble of String and Structural Static Features
por: Wei Wang, et al.
Publicado: (2018) -
LSGAN-AT: enhancing malware detector robustness against adversarial examples
por: Jianhua Wang, et al.
Publicado: (2021)