AWEU-Net: An Attention-Aware Weight Excitation U-Net for Lung Nodule Segmentation

Lung cancer is a deadly cancer that causes millions of deaths every year around the world. Accurate lung nodule detection and segmentation in computed tomography (CT) images is a vital step for diagnosing lung cancer early. Most existing systems face several challenges, such as the heterogeneity in...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Syeda Furruka Banu, Md. Mostafa Kamal Sarker, Mohamed Abdel-Nasser, Domenec Puig, Hatem A. Raswan
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
T
Acceso en línea:https://doaj.org/article/42f0b75d487e478abce7b0996cf5f2d4
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Lung cancer is a deadly cancer that causes millions of deaths every year around the world. Accurate lung nodule detection and segmentation in computed tomography (CT) images is a vital step for diagnosing lung cancer early. Most existing systems face several challenges, such as the heterogeneity in CT images and variation in nodule size, shape, and location, which limit their accuracy. In an attempt to handle these challenges, this article proposes a fully automated deep learning framework that consists of lung nodule detection and segmentation models. Our proposed system comprises two cascaded stages: (1) nodule detection based on fine-tuned Faster R-CNN to localize the nodules in CT images, and (2) nodule segmentation based on the U-Net architecture with two effective blocks, namely position attention-aware weight excitation (PAWE) and channel attention-aware weight excitation (CAWE), to enhance the ability to discriminate between nodule and non-nodule feature representations. The experimental results demonstrate that the proposed system yields a Dice score of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>89.79</mn><mo>%</mo></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>90.35</mn><mo>%</mo></mrow></semantics></math></inline-formula>, and an intersection over union (IoU) of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>82.34</mn><mo>%</mo></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>83.21</mn><mo>%</mo></mrow></semantics></math></inline-formula> on the publicly available LUNA16 and LIDC-IDRI datasets, respectively.