AWEU-Net: An Attention-Aware Weight Excitation U-Net for Lung Nodule Segmentation

Lung cancer is a deadly cancer that causes millions of deaths every year around the world. Accurate lung nodule detection and segmentation in computed tomography (CT) images is a vital step for diagnosing lung cancer early. Most existing systems face several challenges, such as the heterogeneity in...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Syeda Furruka Banu, Md. Mostafa Kamal Sarker, Mohamed Abdel-Nasser, Domenec Puig, Hatem A. Raswan
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
T
Acceso en línea:https://doaj.org/article/42f0b75d487e478abce7b0996cf5f2d4
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:42f0b75d487e478abce7b0996cf5f2d4
record_format dspace
spelling oai:doaj.org-article:42f0b75d487e478abce7b0996cf5f2d42021-11-11T15:11:43ZAWEU-Net: An Attention-Aware Weight Excitation U-Net for Lung Nodule Segmentation10.3390/app1121101322076-3417https://doaj.org/article/42f0b75d487e478abce7b0996cf5f2d42021-10-01T00:00:00Zhttps://www.mdpi.com/2076-3417/11/21/10132https://doaj.org/toc/2076-3417Lung cancer is a deadly cancer that causes millions of deaths every year around the world. Accurate lung nodule detection and segmentation in computed tomography (CT) images is a vital step for diagnosing lung cancer early. Most existing systems face several challenges, such as the heterogeneity in CT images and variation in nodule size, shape, and location, which limit their accuracy. In an attempt to handle these challenges, this article proposes a fully automated deep learning framework that consists of lung nodule detection and segmentation models. Our proposed system comprises two cascaded stages: (1) nodule detection based on fine-tuned Faster R-CNN to localize the nodules in CT images, and (2) nodule segmentation based on the U-Net architecture with two effective blocks, namely position attention-aware weight excitation (PAWE) and channel attention-aware weight excitation (CAWE), to enhance the ability to discriminate between nodule and non-nodule feature representations. The experimental results demonstrate that the proposed system yields a Dice score of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>89.79</mn><mo>%</mo></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>90.35</mn><mo>%</mo></mrow></semantics></math></inline-formula>, and an intersection over union (IoU) of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>82.34</mn><mo>%</mo></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>83.21</mn><mo>%</mo></mrow></semantics></math></inline-formula> on the publicly available LUNA16 and LIDC-IDRI datasets, respectively.Syeda Furruka BanuMd. Mostafa Kamal SarkerMohamed Abdel-NasserDomenec PuigHatem A. RaswanMDPI AGarticleartificial intelligencecomputer-aided diagnosiscomputed tomographylung cancerdeep learninglung nodule detectionTechnologyTEngineering (General). Civil engineering (General)TA1-2040Biology (General)QH301-705.5PhysicsQC1-999ChemistryQD1-999ENApplied Sciences, Vol 11, Iss 10132, p 10132 (2021)
institution DOAJ
collection DOAJ
language EN
topic artificial intelligence
computer-aided diagnosis
computed tomography
lung cancer
deep learning
lung nodule detection
Technology
T
Engineering (General). Civil engineering (General)
TA1-2040
Biology (General)
QH301-705.5
Physics
QC1-999
Chemistry
QD1-999
spellingShingle artificial intelligence
computer-aided diagnosis
computed tomography
lung cancer
deep learning
lung nodule detection
Technology
T
Engineering (General). Civil engineering (General)
TA1-2040
Biology (General)
QH301-705.5
Physics
QC1-999
Chemistry
QD1-999
Syeda Furruka Banu
Md. Mostafa Kamal Sarker
Mohamed Abdel-Nasser
Domenec Puig
Hatem A. Raswan
AWEU-Net: An Attention-Aware Weight Excitation U-Net for Lung Nodule Segmentation
description Lung cancer is a deadly cancer that causes millions of deaths every year around the world. Accurate lung nodule detection and segmentation in computed tomography (CT) images is a vital step for diagnosing lung cancer early. Most existing systems face several challenges, such as the heterogeneity in CT images and variation in nodule size, shape, and location, which limit their accuracy. In an attempt to handle these challenges, this article proposes a fully automated deep learning framework that consists of lung nodule detection and segmentation models. Our proposed system comprises two cascaded stages: (1) nodule detection based on fine-tuned Faster R-CNN to localize the nodules in CT images, and (2) nodule segmentation based on the U-Net architecture with two effective blocks, namely position attention-aware weight excitation (PAWE) and channel attention-aware weight excitation (CAWE), to enhance the ability to discriminate between nodule and non-nodule feature representations. The experimental results demonstrate that the proposed system yields a Dice score of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>89.79</mn><mo>%</mo></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>90.35</mn><mo>%</mo></mrow></semantics></math></inline-formula>, and an intersection over union (IoU) of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>82.34</mn><mo>%</mo></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>83.21</mn><mo>%</mo></mrow></semantics></math></inline-formula> on the publicly available LUNA16 and LIDC-IDRI datasets, respectively.
format article
author Syeda Furruka Banu
Md. Mostafa Kamal Sarker
Mohamed Abdel-Nasser
Domenec Puig
Hatem A. Raswan
author_facet Syeda Furruka Banu
Md. Mostafa Kamal Sarker
Mohamed Abdel-Nasser
Domenec Puig
Hatem A. Raswan
author_sort Syeda Furruka Banu
title AWEU-Net: An Attention-Aware Weight Excitation U-Net for Lung Nodule Segmentation
title_short AWEU-Net: An Attention-Aware Weight Excitation U-Net for Lung Nodule Segmentation
title_full AWEU-Net: An Attention-Aware Weight Excitation U-Net for Lung Nodule Segmentation
title_fullStr AWEU-Net: An Attention-Aware Weight Excitation U-Net for Lung Nodule Segmentation
title_full_unstemmed AWEU-Net: An Attention-Aware Weight Excitation U-Net for Lung Nodule Segmentation
title_sort aweu-net: an attention-aware weight excitation u-net for lung nodule segmentation
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/42f0b75d487e478abce7b0996cf5f2d4
work_keys_str_mv AT syedafurrukabanu aweunetanattentionawareweightexcitationunetforlungnodulesegmentation
AT mdmostafakamalsarker aweunetanattentionawareweightexcitationunetforlungnodulesegmentation
AT mohamedabdelnasser aweunetanattentionawareweightexcitationunetforlungnodulesegmentation
AT domenecpuig aweunetanattentionawareweightexcitationunetforlungnodulesegmentation
AT hatemaraswan aweunetanattentionawareweightexcitationunetforlungnodulesegmentation
_version_ 1718436743718371328