AWEU-Net: An Attention-Aware Weight Excitation U-Net for Lung Nodule Segmentation
Lung cancer is a deadly cancer that causes millions of deaths every year around the world. Accurate lung nodule detection and segmentation in computed tomography (CT) images is a vital step for diagnosing lung cancer early. Most existing systems face several challenges, such as the heterogeneity in...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/42f0b75d487e478abce7b0996cf5f2d4 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:42f0b75d487e478abce7b0996cf5f2d4 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:42f0b75d487e478abce7b0996cf5f2d42021-11-11T15:11:43ZAWEU-Net: An Attention-Aware Weight Excitation U-Net for Lung Nodule Segmentation10.3390/app1121101322076-3417https://doaj.org/article/42f0b75d487e478abce7b0996cf5f2d42021-10-01T00:00:00Zhttps://www.mdpi.com/2076-3417/11/21/10132https://doaj.org/toc/2076-3417Lung cancer is a deadly cancer that causes millions of deaths every year around the world. Accurate lung nodule detection and segmentation in computed tomography (CT) images is a vital step for diagnosing lung cancer early. Most existing systems face several challenges, such as the heterogeneity in CT images and variation in nodule size, shape, and location, which limit their accuracy. In an attempt to handle these challenges, this article proposes a fully automated deep learning framework that consists of lung nodule detection and segmentation models. Our proposed system comprises two cascaded stages: (1) nodule detection based on fine-tuned Faster R-CNN to localize the nodules in CT images, and (2) nodule segmentation based on the U-Net architecture with two effective blocks, namely position attention-aware weight excitation (PAWE) and channel attention-aware weight excitation (CAWE), to enhance the ability to discriminate between nodule and non-nodule feature representations. The experimental results demonstrate that the proposed system yields a Dice score of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>89.79</mn><mo>%</mo></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>90.35</mn><mo>%</mo></mrow></semantics></math></inline-formula>, and an intersection over union (IoU) of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>82.34</mn><mo>%</mo></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>83.21</mn><mo>%</mo></mrow></semantics></math></inline-formula> on the publicly available LUNA16 and LIDC-IDRI datasets, respectively.Syeda Furruka BanuMd. Mostafa Kamal SarkerMohamed Abdel-NasserDomenec PuigHatem A. RaswanMDPI AGarticleartificial intelligencecomputer-aided diagnosiscomputed tomographylung cancerdeep learninglung nodule detectionTechnologyTEngineering (General). Civil engineering (General)TA1-2040Biology (General)QH301-705.5PhysicsQC1-999ChemistryQD1-999ENApplied Sciences, Vol 11, Iss 10132, p 10132 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
artificial intelligence computer-aided diagnosis computed tomography lung cancer deep learning lung nodule detection Technology T Engineering (General). Civil engineering (General) TA1-2040 Biology (General) QH301-705.5 Physics QC1-999 Chemistry QD1-999 |
spellingShingle |
artificial intelligence computer-aided diagnosis computed tomography lung cancer deep learning lung nodule detection Technology T Engineering (General). Civil engineering (General) TA1-2040 Biology (General) QH301-705.5 Physics QC1-999 Chemistry QD1-999 Syeda Furruka Banu Md. Mostafa Kamal Sarker Mohamed Abdel-Nasser Domenec Puig Hatem A. Raswan AWEU-Net: An Attention-Aware Weight Excitation U-Net for Lung Nodule Segmentation |
description |
Lung cancer is a deadly cancer that causes millions of deaths every year around the world. Accurate lung nodule detection and segmentation in computed tomography (CT) images is a vital step for diagnosing lung cancer early. Most existing systems face several challenges, such as the heterogeneity in CT images and variation in nodule size, shape, and location, which limit their accuracy. In an attempt to handle these challenges, this article proposes a fully automated deep learning framework that consists of lung nodule detection and segmentation models. Our proposed system comprises two cascaded stages: (1) nodule detection based on fine-tuned Faster R-CNN to localize the nodules in CT images, and (2) nodule segmentation based on the U-Net architecture with two effective blocks, namely position attention-aware weight excitation (PAWE) and channel attention-aware weight excitation (CAWE), to enhance the ability to discriminate between nodule and non-nodule feature representations. The experimental results demonstrate that the proposed system yields a Dice score of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>89.79</mn><mo>%</mo></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>90.35</mn><mo>%</mo></mrow></semantics></math></inline-formula>, and an intersection over union (IoU) of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>82.34</mn><mo>%</mo></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>83.21</mn><mo>%</mo></mrow></semantics></math></inline-formula> on the publicly available LUNA16 and LIDC-IDRI datasets, respectively. |
format |
article |
author |
Syeda Furruka Banu Md. Mostafa Kamal Sarker Mohamed Abdel-Nasser Domenec Puig Hatem A. Raswan |
author_facet |
Syeda Furruka Banu Md. Mostafa Kamal Sarker Mohamed Abdel-Nasser Domenec Puig Hatem A. Raswan |
author_sort |
Syeda Furruka Banu |
title |
AWEU-Net: An Attention-Aware Weight Excitation U-Net for Lung Nodule Segmentation |
title_short |
AWEU-Net: An Attention-Aware Weight Excitation U-Net for Lung Nodule Segmentation |
title_full |
AWEU-Net: An Attention-Aware Weight Excitation U-Net for Lung Nodule Segmentation |
title_fullStr |
AWEU-Net: An Attention-Aware Weight Excitation U-Net for Lung Nodule Segmentation |
title_full_unstemmed |
AWEU-Net: An Attention-Aware Weight Excitation U-Net for Lung Nodule Segmentation |
title_sort |
aweu-net: an attention-aware weight excitation u-net for lung nodule segmentation |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/42f0b75d487e478abce7b0996cf5f2d4 |
work_keys_str_mv |
AT syedafurrukabanu aweunetanattentionawareweightexcitationunetforlungnodulesegmentation AT mdmostafakamalsarker aweunetanattentionawareweightexcitationunetforlungnodulesegmentation AT mohamedabdelnasser aweunetanattentionawareweightexcitationunetforlungnodulesegmentation AT domenecpuig aweunetanattentionawareweightexcitationunetforlungnodulesegmentation AT hatemaraswan aweunetanattentionawareweightexcitationunetforlungnodulesegmentation |
_version_ |
1718436743718371328 |