Co-continuous structural effect of size-controlled macro-porous glass membrane on extracellular vesicle collection for the analysis of miRNA
Abstract Recent studies have shown that extracellular vesicles (EVs) can be utilized as appropriate and highly specific biomarkers in liquid biopsy for the diagnosis and prognosis of serious illness. However, there are few methods that can collect and isolate miRNA in EVs simply, quickly and efficie...
Guardado en:
Autores principales: | , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/431686f73b4f471ba3708db7b57033b4 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:431686f73b4f471ba3708db7b57033b4 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:431686f73b4f471ba3708db7b57033b42021-12-02T13:39:23ZCo-continuous structural effect of size-controlled macro-porous glass membrane on extracellular vesicle collection for the analysis of miRNA10.1038/s41598-021-87986-22045-2322https://doaj.org/article/431686f73b4f471ba3708db7b57033b42021-04-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-87986-2https://doaj.org/toc/2045-2322Abstract Recent studies have shown that extracellular vesicles (EVs) can be utilized as appropriate and highly specific biomarkers in liquid biopsy for the diagnosis and prognosis of serious illness. However, there are few methods that can collect and isolate miRNA in EVs simply, quickly and efficiently using general equipment such as a normal centrifuge. In this paper, we developed an advanced glass membrane column (AGC) device incorporating a size-controlled macro-porous glass (MPG) membrane with a co-continuous structure to overcome the limitations of conventional EV collection and miRNA extraction from the EVs. The size of macro-pores in the MPG membrane could be accurately controlled by changing the heating temperature and time on the basis of spinodal decomposition of B2O3, Na2O, and SiO2 in phase separation. The AGC device with an MPG membrane could collect the EVs simply and quickly (< 10 min) from cell culture supernatant, serum and urine. This AGC device could extract miRNA from the EVs captured in the MPG membrane with high efficiency when combined with a miRNA extraction solution. We suggest that the AGC device with an MPG membrane can be useful for the diagnosis and prognosis of serious illness using of EVs in various kinds of body fluids.Hiroshi YukawaShuji YamazakiKeita AokiKengo MutoNaoto KiharaKazuhide SatoDaisuke OnoshimaTakahiro OchiyaYasuhito TanakaYoshinobu BabaNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-13 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Hiroshi Yukawa Shuji Yamazaki Keita Aoki Kengo Muto Naoto Kihara Kazuhide Sato Daisuke Onoshima Takahiro Ochiya Yasuhito Tanaka Yoshinobu Baba Co-continuous structural effect of size-controlled macro-porous glass membrane on extracellular vesicle collection for the analysis of miRNA |
description |
Abstract Recent studies have shown that extracellular vesicles (EVs) can be utilized as appropriate and highly specific biomarkers in liquid biopsy for the diagnosis and prognosis of serious illness. However, there are few methods that can collect and isolate miRNA in EVs simply, quickly and efficiently using general equipment such as a normal centrifuge. In this paper, we developed an advanced glass membrane column (AGC) device incorporating a size-controlled macro-porous glass (MPG) membrane with a co-continuous structure to overcome the limitations of conventional EV collection and miRNA extraction from the EVs. The size of macro-pores in the MPG membrane could be accurately controlled by changing the heating temperature and time on the basis of spinodal decomposition of B2O3, Na2O, and SiO2 in phase separation. The AGC device with an MPG membrane could collect the EVs simply and quickly (< 10 min) from cell culture supernatant, serum and urine. This AGC device could extract miRNA from the EVs captured in the MPG membrane with high efficiency when combined with a miRNA extraction solution. We suggest that the AGC device with an MPG membrane can be useful for the diagnosis and prognosis of serious illness using of EVs in various kinds of body fluids. |
format |
article |
author |
Hiroshi Yukawa Shuji Yamazaki Keita Aoki Kengo Muto Naoto Kihara Kazuhide Sato Daisuke Onoshima Takahiro Ochiya Yasuhito Tanaka Yoshinobu Baba |
author_facet |
Hiroshi Yukawa Shuji Yamazaki Keita Aoki Kengo Muto Naoto Kihara Kazuhide Sato Daisuke Onoshima Takahiro Ochiya Yasuhito Tanaka Yoshinobu Baba |
author_sort |
Hiroshi Yukawa |
title |
Co-continuous structural effect of size-controlled macro-porous glass membrane on extracellular vesicle collection for the analysis of miRNA |
title_short |
Co-continuous structural effect of size-controlled macro-porous glass membrane on extracellular vesicle collection for the analysis of miRNA |
title_full |
Co-continuous structural effect of size-controlled macro-porous glass membrane on extracellular vesicle collection for the analysis of miRNA |
title_fullStr |
Co-continuous structural effect of size-controlled macro-porous glass membrane on extracellular vesicle collection for the analysis of miRNA |
title_full_unstemmed |
Co-continuous structural effect of size-controlled macro-porous glass membrane on extracellular vesicle collection for the analysis of miRNA |
title_sort |
co-continuous structural effect of size-controlled macro-porous glass membrane on extracellular vesicle collection for the analysis of mirna |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/431686f73b4f471ba3708db7b57033b4 |
work_keys_str_mv |
AT hiroshiyukawa cocontinuousstructuraleffectofsizecontrolledmacroporousglassmembraneonextracellularvesiclecollectionfortheanalysisofmirna AT shujiyamazaki cocontinuousstructuraleffectofsizecontrolledmacroporousglassmembraneonextracellularvesiclecollectionfortheanalysisofmirna AT keitaaoki cocontinuousstructuraleffectofsizecontrolledmacroporousglassmembraneonextracellularvesiclecollectionfortheanalysisofmirna AT kengomuto cocontinuousstructuraleffectofsizecontrolledmacroporousglassmembraneonextracellularvesiclecollectionfortheanalysisofmirna AT naotokihara cocontinuousstructuraleffectofsizecontrolledmacroporousglassmembraneonextracellularvesiclecollectionfortheanalysisofmirna AT kazuhidesato cocontinuousstructuraleffectofsizecontrolledmacroporousglassmembraneonextracellularvesiclecollectionfortheanalysisofmirna AT daisukeonoshima cocontinuousstructuraleffectofsizecontrolledmacroporousglassmembraneonextracellularvesiclecollectionfortheanalysisofmirna AT takahiroochiya cocontinuousstructuraleffectofsizecontrolledmacroporousglassmembraneonextracellularvesiclecollectionfortheanalysisofmirna AT yasuhitotanaka cocontinuousstructuraleffectofsizecontrolledmacroporousglassmembraneonextracellularvesiclecollectionfortheanalysisofmirna AT yoshinobubaba cocontinuousstructuraleffectofsizecontrolledmacroporousglassmembraneonextracellularvesiclecollectionfortheanalysisofmirna |
_version_ |
1718392610676015104 |