Reconstructing lost BOLD signal in individual participants using deep machine learning

Signal loss in blood oxygen level‐dependent (BOLD) fMRI can lead to misinterpretation of findings. The authors trained a deep learning model to reconstruct compromised BOLD signal in datasets from healthy participants and in patients whose scans suffered signal loss due to intracortical electrodes....

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Yuxiang Yan, Louisa Dahmani, Jianxun Ren, Lunhao Shen, Xiaolong Peng, Ruiqi Wang, Changgeng He, Changqing Jiang, Chen Gong, Ye Tian, Jianguo Zhang, Yi Guo, Yuanxiang Lin, Shijun Li, Meiyun Wang, Luming Li, Bo Hong, Hesheng Liu
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/4329acd981f14858b29114ccd5cf4a4c
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Signal loss in blood oxygen level‐dependent (BOLD) fMRI can lead to misinterpretation of findings. The authors trained a deep learning model to reconstruct compromised BOLD signal in datasets from healthy participants and in patients whose scans suffered signal loss due to intracortical electrodes.