Reconstructing lost BOLD signal in individual participants using deep machine learning
Signal loss in blood oxygen level‐dependent (BOLD) fMRI can lead to misinterpretation of findings. The authors trained a deep learning model to reconstruct compromised BOLD signal in datasets from healthy participants and in patients whose scans suffered signal loss due to intracortical electrodes....
Guardado en:
Autores principales: | Yuxiang Yan, Louisa Dahmani, Jianxun Ren, Lunhao Shen, Xiaolong Peng, Ruiqi Wang, Changgeng He, Changqing Jiang, Chen Gong, Ye Tian, Jianguo Zhang, Yi Guo, Yuanxiang Lin, Shijun Li, Meiyun Wang, Luming Li, Bo Hong, Hesheng Liu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/4329acd981f14858b29114ccd5cf4a4c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Personalized functional imaging identifies brain stimulation target for a patient with trauma-induced functional disruption
por: Jianxun Ren, et al.
Publicado: (2022) -
Turkey's bold new visa diplomacy /
por: Devrim, Deniz
Publicado: (2010) -
REVIEW: Noted: Bold educational portrait
por: Karen Abplanalp
Publicado: (2012) -
Towards reconstruction of the lost Late Bronze Age intra-caldera island of Santorini, Greece
por: Dávid Karátson, et al.
Publicado: (2018) -
A predation cost to bold fish in the wild
por: Kaj Hulthén, et al.
Publicado: (2017)