Predicting thermoelectric properties from chemical formula with explicitly identifying dopant effects
Abstract Dopants play an important role in synthesizing materials to improve target materials properties or stabilize the materials. In particular, the dopants are essential to improve thermoelectic performances of the materials. However, existing machine learning methods cannot accurately predict t...
Guardado en:
Autores principales: | Gyoung S. Na, Seunghun Jang, Hyunju Chang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/432bbf5584254aeaa21e56b499ab0a42 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Thermodynamics of order and randomness in dopant distributions inferred from atomically resolved imaging
por: Lukas Vlcek, et al.
Publicado: (2021) -
How dopants limit the ultrahigh thermal conductivity of boron arsenide: a first principles study
por: Mauro Fava, et al.
Publicado: (2021) -
Optimal band structure for thermoelectrics with realistic scattering and bands
por: Junsoo Park, et al.
Publicado: (2021) -
Restructured single parabolic band model for quick analysis in thermoelectricity
por: Jianbo Zhu, et al.
Publicado: (2021) -
Shear induced deformation twinning evolution in thermoelectric InSb
por: Zhongtao Lu, et al.
Publicado: (2021)