A predictive score for progression of COVID-19 in hospitalized persons: a cohort study

Abstract Accurate prediction of the risk of progression of coronavirus disease (COVID-19) is needed at the time of hospitalization. Logistic regression analyses are used to interrogate clinical and laboratory co-variates from every hospital admission from an area of 2 million people with sporadic ca...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jingbo Xu, Weida Wang, Honghui Ye, Wenzheng Pang, Pengfei Pang, Meiwen Tang, Feng Xie, Zhitao Li, Bixiang Li, Anqi Liang, Juan Zhuang, Jing Yang, Chunyu Zhang, Jiangnan Ren, Lin Tian, Zhonghe Li, Jinyu Xia, Robert P. Gale, Hong Shan, Yang Liang
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Acceso en línea:https://doaj.org/article/43320e58c92a49ecb89ec27d60afd815
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:43320e58c92a49ecb89ec27d60afd815
record_format dspace
spelling oai:doaj.org-article:43320e58c92a49ecb89ec27d60afd8152021-12-02T17:51:28ZA predictive score for progression of COVID-19 in hospitalized persons: a cohort study10.1038/s41533-021-00244-w2055-1010https://doaj.org/article/43320e58c92a49ecb89ec27d60afd8152021-06-01T00:00:00Zhttps://doi.org/10.1038/s41533-021-00244-whttps://doaj.org/toc/2055-1010Abstract Accurate prediction of the risk of progression of coronavirus disease (COVID-19) is needed at the time of hospitalization. Logistic regression analyses are used to interrogate clinical and laboratory co-variates from every hospital admission from an area of 2 million people with sporadic cases. From a total of 98 subjects, 3 were severe COVID-19 on admission. From the remaining subjects, 24 developed severe/critical symptoms. The predictive model includes four co-variates: age (>60 years; odds ratio [OR] = 12 [2.3, 62]); blood oxygen saturation (<97%; OR = 10.4 [2.04, 53]); C-reactive protein (>5.75 mg/L; OR = 9.3 [1.5, 58]); and prothrombin time (>12.3 s; OR = 6.7 [1.1, 41]). Cutoff value is two factors, and the sensitivity and specificity are 96% and 78% respectively. The area under the receiver-operator characteristic curve is 0.937. This model is suitable in predicting which unselected newly hospitalized persons are at-risk to develop severe/critical COVID-19.Jingbo XuWeida WangHonghui YeWenzheng PangPengfei PangMeiwen TangFeng XieZhitao LiBixiang LiAnqi LiangJuan ZhuangJing YangChunyu ZhangJiangnan RenLin TianZhonghe LiJinyu XiaRobert P. GaleHong ShanYang LiangNature PortfolioarticleDiseases of the respiratory systemRC705-779ENnpj Primary Care Respiratory Medicine, Vol 31, Iss 1, Pp 1-6 (2021)
institution DOAJ
collection DOAJ
language EN
topic Diseases of the respiratory system
RC705-779
spellingShingle Diseases of the respiratory system
RC705-779
Jingbo Xu
Weida Wang
Honghui Ye
Wenzheng Pang
Pengfei Pang
Meiwen Tang
Feng Xie
Zhitao Li
Bixiang Li
Anqi Liang
Juan Zhuang
Jing Yang
Chunyu Zhang
Jiangnan Ren
Lin Tian
Zhonghe Li
Jinyu Xia
Robert P. Gale
Hong Shan
Yang Liang
A predictive score for progression of COVID-19 in hospitalized persons: a cohort study
description Abstract Accurate prediction of the risk of progression of coronavirus disease (COVID-19) is needed at the time of hospitalization. Logistic regression analyses are used to interrogate clinical and laboratory co-variates from every hospital admission from an area of 2 million people with sporadic cases. From a total of 98 subjects, 3 were severe COVID-19 on admission. From the remaining subjects, 24 developed severe/critical symptoms. The predictive model includes four co-variates: age (>60 years; odds ratio [OR] = 12 [2.3, 62]); blood oxygen saturation (<97%; OR = 10.4 [2.04, 53]); C-reactive protein (>5.75 mg/L; OR = 9.3 [1.5, 58]); and prothrombin time (>12.3 s; OR = 6.7 [1.1, 41]). Cutoff value is two factors, and the sensitivity and specificity are 96% and 78% respectively. The area under the receiver-operator characteristic curve is 0.937. This model is suitable in predicting which unselected newly hospitalized persons are at-risk to develop severe/critical COVID-19.
format article
author Jingbo Xu
Weida Wang
Honghui Ye
Wenzheng Pang
Pengfei Pang
Meiwen Tang
Feng Xie
Zhitao Li
Bixiang Li
Anqi Liang
Juan Zhuang
Jing Yang
Chunyu Zhang
Jiangnan Ren
Lin Tian
Zhonghe Li
Jinyu Xia
Robert P. Gale
Hong Shan
Yang Liang
author_facet Jingbo Xu
Weida Wang
Honghui Ye
Wenzheng Pang
Pengfei Pang
Meiwen Tang
Feng Xie
Zhitao Li
Bixiang Li
Anqi Liang
Juan Zhuang
Jing Yang
Chunyu Zhang
Jiangnan Ren
Lin Tian
Zhonghe Li
Jinyu Xia
Robert P. Gale
Hong Shan
Yang Liang
author_sort Jingbo Xu
title A predictive score for progression of COVID-19 in hospitalized persons: a cohort study
title_short A predictive score for progression of COVID-19 in hospitalized persons: a cohort study
title_full A predictive score for progression of COVID-19 in hospitalized persons: a cohort study
title_fullStr A predictive score for progression of COVID-19 in hospitalized persons: a cohort study
title_full_unstemmed A predictive score for progression of COVID-19 in hospitalized persons: a cohort study
title_sort predictive score for progression of covid-19 in hospitalized persons: a cohort study
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/43320e58c92a49ecb89ec27d60afd815
work_keys_str_mv AT jingboxu apredictivescoreforprogressionofcovid19inhospitalizedpersonsacohortstudy
AT weidawang apredictivescoreforprogressionofcovid19inhospitalizedpersonsacohortstudy
AT honghuiye apredictivescoreforprogressionofcovid19inhospitalizedpersonsacohortstudy
AT wenzhengpang apredictivescoreforprogressionofcovid19inhospitalizedpersonsacohortstudy
AT pengfeipang apredictivescoreforprogressionofcovid19inhospitalizedpersonsacohortstudy
AT meiwentang apredictivescoreforprogressionofcovid19inhospitalizedpersonsacohortstudy
AT fengxie apredictivescoreforprogressionofcovid19inhospitalizedpersonsacohortstudy
AT zhitaoli apredictivescoreforprogressionofcovid19inhospitalizedpersonsacohortstudy
AT bixiangli apredictivescoreforprogressionofcovid19inhospitalizedpersonsacohortstudy
AT anqiliang apredictivescoreforprogressionofcovid19inhospitalizedpersonsacohortstudy
AT juanzhuang apredictivescoreforprogressionofcovid19inhospitalizedpersonsacohortstudy
AT jingyang apredictivescoreforprogressionofcovid19inhospitalizedpersonsacohortstudy
AT chunyuzhang apredictivescoreforprogressionofcovid19inhospitalizedpersonsacohortstudy
AT jiangnanren apredictivescoreforprogressionofcovid19inhospitalizedpersonsacohortstudy
AT lintian apredictivescoreforprogressionofcovid19inhospitalizedpersonsacohortstudy
AT zhongheli apredictivescoreforprogressionofcovid19inhospitalizedpersonsacohortstudy
AT jinyuxia apredictivescoreforprogressionofcovid19inhospitalizedpersonsacohortstudy
AT robertpgale apredictivescoreforprogressionofcovid19inhospitalizedpersonsacohortstudy
AT hongshan apredictivescoreforprogressionofcovid19inhospitalizedpersonsacohortstudy
AT yangliang apredictivescoreforprogressionofcovid19inhospitalizedpersonsacohortstudy
AT jingboxu predictivescoreforprogressionofcovid19inhospitalizedpersonsacohortstudy
AT weidawang predictivescoreforprogressionofcovid19inhospitalizedpersonsacohortstudy
AT honghuiye predictivescoreforprogressionofcovid19inhospitalizedpersonsacohortstudy
AT wenzhengpang predictivescoreforprogressionofcovid19inhospitalizedpersonsacohortstudy
AT pengfeipang predictivescoreforprogressionofcovid19inhospitalizedpersonsacohortstudy
AT meiwentang predictivescoreforprogressionofcovid19inhospitalizedpersonsacohortstudy
AT fengxie predictivescoreforprogressionofcovid19inhospitalizedpersonsacohortstudy
AT zhitaoli predictivescoreforprogressionofcovid19inhospitalizedpersonsacohortstudy
AT bixiangli predictivescoreforprogressionofcovid19inhospitalizedpersonsacohortstudy
AT anqiliang predictivescoreforprogressionofcovid19inhospitalizedpersonsacohortstudy
AT juanzhuang predictivescoreforprogressionofcovid19inhospitalizedpersonsacohortstudy
AT jingyang predictivescoreforprogressionofcovid19inhospitalizedpersonsacohortstudy
AT chunyuzhang predictivescoreforprogressionofcovid19inhospitalizedpersonsacohortstudy
AT jiangnanren predictivescoreforprogressionofcovid19inhospitalizedpersonsacohortstudy
AT lintian predictivescoreforprogressionofcovid19inhospitalizedpersonsacohortstudy
AT zhongheli predictivescoreforprogressionofcovid19inhospitalizedpersonsacohortstudy
AT jinyuxia predictivescoreforprogressionofcovid19inhospitalizedpersonsacohortstudy
AT robertpgale predictivescoreforprogressionofcovid19inhospitalizedpersonsacohortstudy
AT hongshan predictivescoreforprogressionofcovid19inhospitalizedpersonsacohortstudy
AT yangliang predictivescoreforprogressionofcovid19inhospitalizedpersonsacohortstudy
_version_ 1718379221929164800