MEML: A Deep Data Augmentation Method by Mean Extrapolation in Middle Layers
Data augmentation, generating new data that are similar but not same with the original data by making a series of transformations to the original data, is one of the mainstream methods to alleviate the problem of insufficient data. Instead of augmenting input data, this paper proposes a method for a...
Guardado en:
Autores principales: | Dongchen Liu, Lun Zhang, Xiansen Jiang, Caixia Su, Yufeng Fan, Yongfeng Cao |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/434a0ebb58f24674a9e21dac64037db1 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Prospects and limitations of physiologically-based pharmacokinetic modelling for cross-species extrapolation
por: Lars Kuepfer
Publicado: (2019) -
Biosimilars and the extrapolation of indications for inflammatory conditions
por: Tesser JRP, et al.
Publicado: (2017) -
Comparing current and emerging practice models for the extrapolation of survival data: a simulation study and case-study
por: Benjamin Kearns, et al.
Publicado: (2021) -
Dophamine-dependent disorder of conduct of albino rats with sublimate intoxication in the test of extrapolation deliverance
por: N. L. Yakimova, et al.
Publicado: (2013) -
Extrapolative Bayesian Optimization with Gaussian Process and Neural Network Ensemble Surrogate Models
por: Yee-Fun Lim, et al.
Publicado: (2021)