Hypertonic stress modulates eNOS function through O-GlcNAc modification at Thr-866

Abstract O-GlcNAcylation, an energy-sensitive posttranslational modification, can regulate the activity of endothelial nitric oxide synthase (eNOS). Previous studies found that Thr866 is the key site for low-glucose-mediated regulation of eNOS O-GlcNAc. However, it is not known whether this activity...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Chang Li, An He, Yongzheng Guo, Xiyang Yang, Minghao Luo, Zhe Cheng, Longxiang Huang, Yong Xia, Suxin Luo
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/43533d2a51c8416b91c95cafcb473062
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract O-GlcNAcylation, an energy-sensitive posttranslational modification, can regulate the activity of endothelial nitric oxide synthase (eNOS). Previous studies found that Thr866 is the key site for low-glucose-mediated regulation of eNOS O-GlcNAc. However, it is not known whether this activity functions through the Thr866 site concomitant with other physical and chemical factors. Therefore, we first explored the effects of physical and chemical factors on eNOS O-GlcNAc and its Thr866 site. In this study, hypertonic stress, hyperthermia and hydrogen peroxide all increased the expression levels of eNOS O-GlcNAc, whereas hypoxia and high levels of alcohol had no effect. on the expression levels of eNOS O-GlcNAc; by contrast, low pH led to a decrease in eNOS O-GlcNAc levels. Notably, eNOS O-GlcNAc protein levels were unchanged after Thr866 site mutation only under hypertonic conditions, suggesting that hypertonic stress may act through the Thr866 site. Upon exploring the mechanism of hypertonic stress on eNOS O-GlcNAc activity and function, we found that hypertonic stress can upregulate the expression of O-linked N-acetylglucosamine (GlcNAc) transferase (OGT), which is dependent on AMPK. When AMPK was knocked out, the upregulation of OGT expression and increased O-GlcNAc modifications induced by hypertonic stress were reversed.