Highly Active 2D Layered MoS 2 -rGO Hybrids for Energy Conversion and Storage Applications
Abstract The development of efficient materials for the generation and storage of renewable energy is now an urgent task for future energy demand. In this report, molybdenum disulphide hollow sphere (MoS2-HS) and its reduced graphene oxide hybrid (rGO/MoS2-S) have been synthesized and explored for e...
Guardado en:
Autores principales: | , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/435b5cc197284fb0b1733400fb5c425b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:435b5cc197284fb0b1733400fb5c425b |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:435b5cc197284fb0b1733400fb5c425b2021-12-02T11:52:38ZHighly Active 2D Layered MoS 2 -rGO Hybrids for Energy Conversion and Storage Applications10.1038/s41598-017-08677-52045-2322https://doaj.org/article/435b5cc197284fb0b1733400fb5c425b2017-08-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-08677-5https://doaj.org/toc/2045-2322Abstract The development of efficient materials for the generation and storage of renewable energy is now an urgent task for future energy demand. In this report, molybdenum disulphide hollow sphere (MoS2-HS) and its reduced graphene oxide hybrid (rGO/MoS2-S) have been synthesized and explored for energy generation and storage applications. The surface morphology, crystallinity and elemental composition of the as-synthesized materials have been thoroughly analysed. Inspired by the fascinating morphology of the MoS2-HS and rGO/MoS2-S materials, the electrochemical performance towards hydrogen evolution and supercapacitor has been demonstrated. The rGO/MoS2-S shows enhanced gravimetric capacitance values (318 ± 14 Fg−1) with higher specific energy/power outputs (44.1 ± 2.1 Whkg−1 and 159.16 ± 7.0 Wkg−1) and better cyclic performances (82 ± 0.95% even after 5000 cycles). Further, a prototype of the supercapacitor in a coin cell configuration has been fabricated and demonstrated towards powering a LED. The unique balance of exposed edge site and electrical conductivity of rGO/MoS2-S shows remarkably superior HER performances with lower onset over potential (0.16 ± 0.05 V), lower Tafel slope (75 ± 4 mVdec−1), higher exchange current density (0.072 ± 0.023 mAcm−2) and higher TOF (1.47 ± 0.085 s−1) values. The dual performance of the rGO/MoS2-S substantiates the promising application for hydrogen generation and supercapacitor application of interest.Swagatika KamilaBishnupad MohantyAneeya K. SamantaraPuspendu GuhaArnab GhoshBijayalaxmi JenaParlapalli V. SatyamB. K. MishraBikash Kumar JenaNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-13 (2017) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Swagatika Kamila Bishnupad Mohanty Aneeya K. Samantara Puspendu Guha Arnab Ghosh Bijayalaxmi Jena Parlapalli V. Satyam B. K. Mishra Bikash Kumar Jena Highly Active 2D Layered MoS 2 -rGO Hybrids for Energy Conversion and Storage Applications |
description |
Abstract The development of efficient materials for the generation and storage of renewable energy is now an urgent task for future energy demand. In this report, molybdenum disulphide hollow sphere (MoS2-HS) and its reduced graphene oxide hybrid (rGO/MoS2-S) have been synthesized and explored for energy generation and storage applications. The surface morphology, crystallinity and elemental composition of the as-synthesized materials have been thoroughly analysed. Inspired by the fascinating morphology of the MoS2-HS and rGO/MoS2-S materials, the electrochemical performance towards hydrogen evolution and supercapacitor has been demonstrated. The rGO/MoS2-S shows enhanced gravimetric capacitance values (318 ± 14 Fg−1) with higher specific energy/power outputs (44.1 ± 2.1 Whkg−1 and 159.16 ± 7.0 Wkg−1) and better cyclic performances (82 ± 0.95% even after 5000 cycles). Further, a prototype of the supercapacitor in a coin cell configuration has been fabricated and demonstrated towards powering a LED. The unique balance of exposed edge site and electrical conductivity of rGO/MoS2-S shows remarkably superior HER performances with lower onset over potential (0.16 ± 0.05 V), lower Tafel slope (75 ± 4 mVdec−1), higher exchange current density (0.072 ± 0.023 mAcm−2) and higher TOF (1.47 ± 0.085 s−1) values. The dual performance of the rGO/MoS2-S substantiates the promising application for hydrogen generation and supercapacitor application of interest. |
format |
article |
author |
Swagatika Kamila Bishnupad Mohanty Aneeya K. Samantara Puspendu Guha Arnab Ghosh Bijayalaxmi Jena Parlapalli V. Satyam B. K. Mishra Bikash Kumar Jena |
author_facet |
Swagatika Kamila Bishnupad Mohanty Aneeya K. Samantara Puspendu Guha Arnab Ghosh Bijayalaxmi Jena Parlapalli V. Satyam B. K. Mishra Bikash Kumar Jena |
author_sort |
Swagatika Kamila |
title |
Highly Active 2D Layered MoS 2 -rGO Hybrids for Energy Conversion and Storage Applications |
title_short |
Highly Active 2D Layered MoS 2 -rGO Hybrids for Energy Conversion and Storage Applications |
title_full |
Highly Active 2D Layered MoS 2 -rGO Hybrids for Energy Conversion and Storage Applications |
title_fullStr |
Highly Active 2D Layered MoS 2 -rGO Hybrids for Energy Conversion and Storage Applications |
title_full_unstemmed |
Highly Active 2D Layered MoS 2 -rGO Hybrids for Energy Conversion and Storage Applications |
title_sort |
highly active 2d layered mos 2 -rgo hybrids for energy conversion and storage applications |
publisher |
Nature Portfolio |
publishDate |
2017 |
url |
https://doaj.org/article/435b5cc197284fb0b1733400fb5c425b |
work_keys_str_mv |
AT swagatikakamila highlyactive2dlayeredmos2rgohybridsforenergyconversionandstorageapplications AT bishnupadmohanty highlyactive2dlayeredmos2rgohybridsforenergyconversionandstorageapplications AT aneeyaksamantara highlyactive2dlayeredmos2rgohybridsforenergyconversionandstorageapplications AT puspenduguha highlyactive2dlayeredmos2rgohybridsforenergyconversionandstorageapplications AT arnabghosh highlyactive2dlayeredmos2rgohybridsforenergyconversionandstorageapplications AT bijayalaxmijena highlyactive2dlayeredmos2rgohybridsforenergyconversionandstorageapplications AT parlapallivsatyam highlyactive2dlayeredmos2rgohybridsforenergyconversionandstorageapplications AT bkmishra highlyactive2dlayeredmos2rgohybridsforenergyconversionandstorageapplications AT bikashkumarjena highlyactive2dlayeredmos2rgohybridsforenergyconversionandstorageapplications |
_version_ |
1718394980696850432 |