Exponentially fitted multisymplectic scheme for conservative Maxwell equations with oscillary solutions.
Aiming at conservative Maxwell equations with periodic oscillatory solutions, we adopt exponentially fitted trapezoidal scheme to approximate the temporal and spatial derivatives. The scheme is a multisymplectic scheme. Under periodic boundary condition, the scheme satisfies two discrete energy cons...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/4379092b710d4cc69d720f677a797648 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:4379092b710d4cc69d720f677a797648 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:4379092b710d4cc69d720f677a7976482021-12-02T20:17:31ZExponentially fitted multisymplectic scheme for conservative Maxwell equations with oscillary solutions.1932-620310.1371/journal.pone.0256108https://doaj.org/article/4379092b710d4cc69d720f677a7976482021-01-01T00:00:00Zhttps://doi.org/10.1371/journal.pone.0256108https://doaj.org/toc/1932-6203Aiming at conservative Maxwell equations with periodic oscillatory solutions, we adopt exponentially fitted trapezoidal scheme to approximate the temporal and spatial derivatives. The scheme is a multisymplectic scheme. Under periodic boundary condition, the scheme satisfies two discrete energy conservation laws. The scheme also preserves two discrete divergences. To reduce computation cost, we split the original Maxwell equations into three local one-dimension (LOD) Maxwell equations. Then exponentially fitted trapezoidal scheme, applied to the resulted LOD equations, generates LOD multisymplectic scheme. We prove the unconditional stability and convergence of the LOD multisymplectic scheme. Convergence of numerical dispersion relation is also analyzed. At last, we present two numerical examples with periodic oscillatory solutions to confirm the theoretical analysis. Numerical results indicate that the LOD multisymplectic scheme is efficient, stable and conservative in solving conservative Maxwell equations with oscillatory solutions. In addition, to one-dimension Maxwell equations, we apply least square method and LOD multisymplectic scheme to fit the electric permittivity by using exact solution disturbed with small random errors as measured data. Numerical results of parameter inversion fit well with measured data, which shows that least square method combined with LOD multisymplectic scheme is efficient to estimate the model parameter under small random disturbance.Xiuling YinYanqin LiuJingjing ZhangYanfeng ShenLimei YanPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 16, Iss 8, p e0256108 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Xiuling Yin Yanqin Liu Jingjing Zhang Yanfeng Shen Limei Yan Exponentially fitted multisymplectic scheme for conservative Maxwell equations with oscillary solutions. |
description |
Aiming at conservative Maxwell equations with periodic oscillatory solutions, we adopt exponentially fitted trapezoidal scheme to approximate the temporal and spatial derivatives. The scheme is a multisymplectic scheme. Under periodic boundary condition, the scheme satisfies two discrete energy conservation laws. The scheme also preserves two discrete divergences. To reduce computation cost, we split the original Maxwell equations into three local one-dimension (LOD) Maxwell equations. Then exponentially fitted trapezoidal scheme, applied to the resulted LOD equations, generates LOD multisymplectic scheme. We prove the unconditional stability and convergence of the LOD multisymplectic scheme. Convergence of numerical dispersion relation is also analyzed. At last, we present two numerical examples with periodic oscillatory solutions to confirm the theoretical analysis. Numerical results indicate that the LOD multisymplectic scheme is efficient, stable and conservative in solving conservative Maxwell equations with oscillatory solutions. In addition, to one-dimension Maxwell equations, we apply least square method and LOD multisymplectic scheme to fit the electric permittivity by using exact solution disturbed with small random errors as measured data. Numerical results of parameter inversion fit well with measured data, which shows that least square method combined with LOD multisymplectic scheme is efficient to estimate the model parameter under small random disturbance. |
format |
article |
author |
Xiuling Yin Yanqin Liu Jingjing Zhang Yanfeng Shen Limei Yan |
author_facet |
Xiuling Yin Yanqin Liu Jingjing Zhang Yanfeng Shen Limei Yan |
author_sort |
Xiuling Yin |
title |
Exponentially fitted multisymplectic scheme for conservative Maxwell equations with oscillary solutions. |
title_short |
Exponentially fitted multisymplectic scheme for conservative Maxwell equations with oscillary solutions. |
title_full |
Exponentially fitted multisymplectic scheme for conservative Maxwell equations with oscillary solutions. |
title_fullStr |
Exponentially fitted multisymplectic scheme for conservative Maxwell equations with oscillary solutions. |
title_full_unstemmed |
Exponentially fitted multisymplectic scheme for conservative Maxwell equations with oscillary solutions. |
title_sort |
exponentially fitted multisymplectic scheme for conservative maxwell equations with oscillary solutions. |
publisher |
Public Library of Science (PLoS) |
publishDate |
2021 |
url |
https://doaj.org/article/4379092b710d4cc69d720f677a797648 |
work_keys_str_mv |
AT xiulingyin exponentiallyfittedmultisymplecticschemeforconservativemaxwellequationswithoscillarysolutions AT yanqinliu exponentiallyfittedmultisymplecticschemeforconservativemaxwellequationswithoscillarysolutions AT jingjingzhang exponentiallyfittedmultisymplecticschemeforconservativemaxwellequationswithoscillarysolutions AT yanfengshen exponentiallyfittedmultisymplecticschemeforconservativemaxwellequationswithoscillarysolutions AT limeiyan exponentiallyfittedmultisymplecticschemeforconservativemaxwellequationswithoscillarysolutions |
_version_ |
1718374340570906624 |