A lossless compression method for multi-component medical images based on big data mining
Abstract In disease diagnosis, medical image plays an important part. Its lossless compression is pretty critical, which directly determines the requirement of local storage space and communication bandwidth of remote medical systems, so as to help the diagnosis and treatment of patients. There are...
Guardado en:
Autores principales: | Gangtao Xin, Pingyi Fan |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/43858440c508469ba4db39daa515613a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Predicting the Lossless Compression Ratio of Remote Sensing Images With Configurational Entropy
por: Xinghua Cheng, et al.
Publicado: (2021) -
Lossless Compression of Sensor Signals Using an Untrained Multi-Channel Recurrent Neural Predictor
por: Qianhao Chen, et al.
Publicado: (2021) -
Bit-Error Aware Lossless Image Compression with 2D-Layer-Block Coding
por: Jungan Chen, et al.
Publicado: (2021) -
Hardware Implementation of the CCSDS 123.0-B-2 Near-Lossless Compression Standard Following an HLS Design Methodology
por: Yubal Barrios, et al.
Publicado: (2021) -
The big picture: mining the student data resource to inform learning development provision
por: Elizabeth Tanguay, et al.
Publicado: (2017)