Tracking changes in behavioural dynamics using prediction error.
Automated analysis of video can now generate extensive time series of pose and motion in freely-moving organisms. This requires new quantitative tools to characterise behavioural dynamics. For the model roundworm Caenorhabditis elegans, body pose can be accurately quantified from video as coordinate...
Guardado en:
Autores principales: | Tom Lorimer, Rachel Goodridge, Antonia K Bock, Vitul Agarwal, Erik Saberski, George Sugihara, Scott A Rifkin |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/439897e04a4c4568a07a874fc7ca9860 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Networks of Causal Linkage Between Eigenmodes Characterize Behavioral Dynamics of Caenorhabditis elegans.
por: Erik Saberski, et al.
Publicado: (2021) -
Dynamics of Florida milk production and total phosphate in Lake Okeechobee.
por: Joseph Park, et al.
Publicado: (2021) -
Striatal prediction errors support dynamic control of declarative memory decisions
por: Jason M. Scimeca, et al.
Publicado: (2016) -
Document similarity for error prediction
por: Péter Marjai, et al.
Publicado: (2021) -
Movement errors during skilled motor performance engage distinct prediction error mechanisms
por: Ella Gabitov, et al.
Publicado: (2020)